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ABSTRACT 
We present an analytically tractable mathematical approach for 
accurately modeling the distribution of inter-contact times 
between mobile devices carried by users. The contribution of this 
paper is two-fold: (1) we show how to employ a Markov-
modulated Poisson process (MMPP) for characterizing long-term 
dependencies in the mobility behavior, and (2) we propose to 
employ a graph-based clustering approach for taking into account 
different user groups with inhomogeneous mobility patterns. We 
illustrate the effectiveness of the proposed approach by 
considering two comprehensive real-world trace data sets. The 
presented quantitative results show that the proposed modeling 
approach closely approximates the dichotomy of the distribution 
of human inter-contact times into an exponential and power-law 
distribution observed in recent studies of real-world trace data. As 
the presented modeling approach for inter-contact times is both 
analytically tractable and captures long-term dependencies in the 
mobility behavior, it possesses clear advantages over methods 
previously introduced for analyzing the performance of 
opportunistic networking protocols. 

Categories and Subject Descriptors 
I.6 [SIMULATION AND MODELING]; 
G.3 [PROBABILITY AND STATISTICS]  

General Terms 
Measurement, Experimentation 

Keywords 
Realistic mobility models, mobile ad hoc networks, delay-tolerant 
networking, Markov-modulated Poisson process 

1. INTRODUCTION 
With the emergence of mobile communication devices, 
opportunistic forwarding protocols are becoming an increasingly 
important area of research. Opportunistic forwarding protocols do 
not rely on the existence of an end-to-end path to forward a 
message from a source node to a destination node. Instead, 
messages are queued and forwarded when devices come into 
contact. Therefore, the message delay of such protocols strongly 
depends on the time between two consecutive contact opportunities, 
i.e. the inter-contact time. To allow quantitative evaluation of such 
forwarding protocols in early design stages, an accurate analytical 
model of the inter-contact time distribution is crucial. Existing 
modeling approaches typically rely on the assumption of 
exponentially distributed inter-contact times. Also many mobility 
models, e.g. the random waypoint mobility model [1], deliver 
exponentially distributed inter-contact times. Recently, large-scale 

studies of human mobility revealed a dichotomy of the distribution 
of inter-contact times of mobile users into an exponential and 
power-law distribution [10]. Therefore, evaluation of opportunistic 
forwarding protocols based on these mobility models may lead to 
wrong or incomplete results. To overcome these limitations, several 
empirical frameworks have been proposed, e.g. [17] that are able to 
closely fit distributions of inter-contact times derived from traces. 
The main disadvantage of these models is that they are not 
analytically tractable. Thus, they have to rely on discrete-event 
simulation rather than easy to evaluate mathematical models. 
In this paper, we present an analytically tractable mathematical 
approach for accurately modeling the distribution of inter-contact 
times between mobile devices carried by users. We show how to 
employ a Markov-modulated Poisson process (MMPP) for 
characterizing long-term dependencies in the mobility behavior and 
we propose to employ a graph-based clustering approach for taking 
into account different user groups with inhomogeneous mobility 
patterns. To effectively estimate the parameters of the MMPP from 
measured real-world trace data, we show how to tailor the well-
known expectation maximization (EM) algorithm to a numerically 
stable procedure based on the randomization technique [12]. We 
illustrate the effectiveness of the proposed approach by considering 
two comprehensive data sets, i.e., the MIT Bluetooth [6] and UCSD 
[13] traces. The presented quantitative results show that the 
proposed modeling approach closely approximates the dichotomy 
of the distribution of human inter-contact times observed in recent 
studies of real-world trace data. The presented modeling approach 
for inter-contact times is both analytically tractable and captures 
long-term dependencies in the mobility behavior. In particular, the 
approach could be used to calculate means of delivery times or 
number of message copies in opportunistic networking [8]. Another 
application of the presented approach constitutes the generation of 
synthetic mobility traces, which closely capture the long-term 
dependencies.  
The paper is organized as follows. In section 2, related work is 
discussed. Section 3 introduces the MMPP approach for modeling 
inter-contact times, an advanced clustering method and 
numerically stable parameter estimation. To illustrate the 
effectiveness of the approach, Section 4 presents quantitative 
results. Finally, concluding remarks are given. 
 
 
 



2. RELATED WORK 
Chaintreau et al. [5] showed that the distribution of human inter-
contact times exhibits a heavy tail like in a power law distribution. 
This observation was contrary to widely used constructive mobility 
models for evaluating ad hoc networking protocols like the random 
waypoint mobility model. In fact, the construction rules of the 
random waypoint mobility model and most other widely used 
mobility models rely on quite some independence assumptions, and, 
thus, yielding exponentially distributed inter-contact times between 
nodes. Karagiannis et al. [10] observed that the distribution of inter-
contact times first follows a power law and then pass over to an 
exponential distribution. Similar to [5], we do not assume an 
exponential distribution for inter-contact times. Opposed to [5] and 
[10], we propose an analytically tractable approach for modeling the 
distribution of human inter-contact times. 
Cai et al. examined the distribution of inter-contact times for the 
random walk model in an unbounded area [3]. They showed that for 
this mobility model the distribution of inter-contact times follows a 
power law rather than an exponential distribution. The same authors 
studied in [4] the effect of mobility patterns on the distribution of 
inter-contact times. They assumed a dichotomy of the inter-contact 
time distribution, like in [10], and showed that a stronger correlation 
in the model leads to a more non-exponential head of the 
distribution. Opposed to [3] and [4], we propose an approach for 
approximating the distribution of the inter-contact times itself, 
rather than construction rules for a mobility model. 
Srinivasan et al. investigated the contact patterns of students in [16]. 
They examined the schedules of the students and derived various 
characteristics. In contrast to this work, we consider contact patterns 
derived from measured real-world traces instead of contact patterns 
derived from pre-defined timetables. In [18], Zhang et al. studied 
the contact patterns between WiFi-equipped busses. They analyzed 
the aggregated inter-contact times and the inter-contact times on a 
route-level and derived models to create synthetic traces. Opposed 
to this work, we focus on the inter-contact times between humans. 
They aren’t constrained to streets and they don’t follow fixed routes 
like the busses in [18]. 
Yoon et al. proposed a framework in [17], which allows combining 
wireless access point association traces with an actual map of the 
considered area. It generates a probabilistic mobility model that 
produces movement patterns. In a similar manner, Kim et al. 
proposed an idea in [11] to create an empirical model. It was formed 
by analyzing information about movement patterns and pause times 
from a real-world trace measured at Dartmouth College. With the 
help of this model, they generated synthetic traces and compared 
them to the real ones. Opposed to [17] and [11], our model, 
although empirically trained, isn’t an empirical model and therefore 
analytically tractable. 
Rhee et al. [15] analyzed GPS traces of persons in various outdoor 
environments and concluded that many statistical features of human 
walks can be emulated with a levy walk mobility model. With this 
model, they recreate inter-contact time distributions observed in 
other mobility traces. Hsu et al. proposed the time-variant 
community mobility model TVC [9]. In TVC, a node chooses a 
community and performs a random direction movement within the 
bounds of the community. In [14], Mei et al. proposed the 
mobility model small world in motion. The main idea is that 
people tend to go to popular places not far away from home. The 
mobility model was also compared against three real-world traces. 
In contrast to [9], [14], [15], we focus on the inter-contact time 

distribution, rather than on a constructive mobility model, as we 
believe this is the most important metric to conduct performance 
studies of various protocols. Therefore, it is easier to theoretically 
analyze it opposed to the complex models proposed in [9], [14] 
and [15]. 

3. MODELING HUMAN INTER-CONTACT 
TIMES USING MARKOV-MODULATED 
POISSON PROCESSES 
To estimate the distribution of inter-contact times between 
humans, we propose a model based on a Markov-modulated 
Poisson process (MMPP). We first want to define the inter-contact 
time that is throughout this paper the aggregated inter-contact 
time among all fixed node pairs. We refer to this pair wise inter-
contact time, as the time between two consecutive starts of a 
contact among two fixed nodes.  
An advantage of the MMPP model is that it is well studied and is 
analytically tractable. We will further introduce a clustering 
approach that helps to fit the distribution of the inter-contact times 
even better and that makes the model more flexible, when used for 
example in an empirical study of a new protocol. 

3.1 Markov-modulated Poisson process 
A Markov-modulated Poisson process (MMPP) is a doubly 
stochastic Poisson process, whose rate varies according to a 
Markov process [7]. A MMPP is defined through the N-state 
continuous-time Markov chain (CTMC) with generator matrix Q 
with 
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complete the construction of the MMPP, the steady state vector π 
with πQ = 0 and π1 = 1, being 1 the column vector of 1s of 
appropriate length, is needed. Furthermore, throughout this paper 
we assume the CTMC to be homogenous, meaning Q and the λi 
are time-independent. 
MMPPs have some attractive features that make them suitable to 
approximate the inter-contact time distribution. In contrast to the 
exponential distribution, arrivals (or triggered events) derived 
from a MMPP are not memory-less. The time of the next arrival 
(meaning the next inter-node contact) depends on the state of the 
underlying Markov chain. While being in state i for an 
exponentially distributed time with mean 1/σi, the arrivals are 
exponentially distributed with rate λi. The cumulative distribution 
function of a MMPP is given by 

 ( ) 1( ) ( )( )xF x e − −= − −QΛπ I Λ Q Λ1  (2) 

with π is the steady state vector, I is the identity matrix, 
Λ=diag(λi) is a square matrix, and 1=(1,1,…,1)T is a column 
vector of length N. 
 



3.2 Parameter Estimation of the MMPP 
For utilizing the MMPP, we need an estimation algorithm to 
match the parameters of the generator matrix Q and the Poisson 
arrival rates λi to the characteristics of given trace data. We employ 
the expectation-maximization (EM) approach, which is a well-
known technique to find the appropriate parameters [2], [12]. We 
used results from previous work [12] tailored to N-state MMPPs. In 
[12], we showed how to employ the EM algorithm for efficiently 
estimating the parameters for a batch Markovian arrival process 
(BMAP). The EM algorithm is numerical stable, since the E-step is 
performed by specially derived computational formulas based on 
the randomization technique. Since the class of BMAPs includes 
MMPPs as a special case, we could apply this algorithm by setting 
the maximum batch size to 1 and restricting the initial parameter set. 
The parameter estimation based on the EM algorithm and the 
randomization technique tailored to MMPPs is outlined in the 
following. 
Consider an experiment with an observable part y {t1,…,tn}, i.e. the 
inter-contact times, and an unobservable part x. We want to 
estimate the parameter set Φ, consisting of the unknown initial state 
probability vector π and the matrices Q and Λ. D=Q-Λ is the rate 
matrix of transitions without arrivals. Λ is the rate matrix of 
transitions with one arrival. Furthermore, we define the matrix of 
probability density functions f(t) by 

 ( )( ) Q tf t e −Λ= Λ  (3) 

We now can define the likelihood by 
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where Φ is the parameter set, y are the observed inter-contact 
times and 1 is the column vector of ones of appropriate length. 

The EM algorithm iteratively improves the parameter set Φ until a 
certain criterion is met, like the difference between the 
consecutive estimates for Φ falls below a threshold or a maximum 
of iterations is reached. Using the observed information y and the 
unobserved information x, the complete likelihood LC can be 
calculated and the expectation step can be conducted numerically 
stable using Equation (5). This is a modification of Equation (13) 
in [12]. For the calculation of the other parameters, we refer to 
[12] due to space limitations. The conditional expectation EΦ 
given the estimate Φ is defined by 
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For the special case of a MMPP, ,
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3.3 Node Clustering 
To account for different user groups (e.g. students, staff etc.), we 
propose to apply a clustering approach for nodes. By dividing the 
inter-contact times extracted from traces into different clusters, we 
can model the distribution of inter-contact times among people even 
better.  
The motivation for node clustering is that humans often form 
groups, e.g. students of a class or colleagues at work. When they do 
this, they share the same inter-contact patterns, meaning that they 
meet each other more regular and that they also meet other non-
group members similar. Think for example of colleagues, who go 
together to lunch and meet other persons together. 
So our goal is to identify different groups of mobile users resp. 
nodes in the traces and independently describe their behavior. For 
this purpose, we first model a graph G(V,E), where V = {v1, v2, …, 
vn} is the set of n nodes and E = {(u,v) | u,v ∈V, wuv > 0} is the set 
of weighted links between them. We define Tuv as the set of pair 
wise inter-contact times between two nodes u and v. The link 
weight wuv is defined as the cardinality of Tuv 

 uv uvw T=  (7) 

Now we apply a hierarchical clustering approach. Let Si be the set 
of j clusters Ci,j in the i-th step. We initialize each cluster C0,j with 
a node 

 0, { }, {1,..., }j jC v j n= ∈  (8) 

 
so S0 is the union of all initial clusters 
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Then, in each step, the two clusters with the highest average 
linking are merged into cluster M 

 
, ,

, ,

, , , ,

, ,
( , )

{ | ( , )

                        arg max ( , )}
i j i k i i

i j i k

i j i k i j i k

i j i k
C C S S

C C

M C C C C
avgdist C C

∈ ×
≠

= ∪ =

 (10) 

and the set of clusters for the next step is 

 1 (i iS S+ = , ,{ , })i j i kC C M∪  (11) 

Furthermore, we need to define the average linking avgdist 
between two clusters, using the aforementioned link weight wuv, 
by 
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This procedure continues until only one cluster is left. This type of 
clustering creates a dendrogram, a graphical representation of the 
merging steps. For the MIT trace, we could identify four different 
clusters. We visualized the results in Figure 1 by coloring the 
nodes of a cluster. In the graph, each node is connected with its 3 
most seen neighboring nodes. 



  
The resulting node clusters match very well with clusters found in 
previous work [6]. The clusters are used to divide the inter-contact 
times of the trace into sets. We achieve this by collecting all pair 
wise inter-contact times for a given node. Therefore, we define the 
set of inter-contact times jT  for a cluster Cj as 
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To further optimize our clustering approach, we also cluster node 
pairs dependent on their mean value of their pair wise inter-
contact times. The distribution of these mean values can be seen 
in Figure 2 for the UCSD trace set. We define the mean inter-
contact time muv of a node pair by 
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Subsequently, according to this mean value we group the node 
pairs into different classes. We choose these classes to reflect 
important time distances in the periodic behavior of human 
interacting, like one hour, one day or one week. Then, we model 
the inter-contact times for each class with an MMPP whose 
parameters are estimated by Eq. (5) and (6). 
An algorithmic description of the presented node clustering 
approach is given in Figure 3 where the initialization step uses Eq. 
(8) and (9), and the clustering step uses Eq. (10), (11) and the 
function avgdist defined in (12). We further use a distance matrix 
D to hold the computed average linking distances between all 
clusters. In each step two clusters are merged and the matrix D is 
decreased in size and entries concerning the two merged clusters 

are recalculated. This saves computation time through avoiding 
unnecessary calculations. 

1: Initialization step 
2: S0 = ∅ 
3: foreach node vi ∈ V do 
4:  Ci = {vi} 
5:  S0 = S0 ∪ Ci 
6: done 
7: foreach cluster C ∈ S0 do 
8:  foreach cluster C’∈ (S0 \ C) do 
9:   D(C,C’) = avgdist(C,C’) 
10:  done 
11: done 
12:  
13: Clustering step 
14: for 0≤i<n do 
15:  cluster_pairmax = (∅,∅) 
16:  cluster_distmax = 0 
17:  foreach cluster C ∈ Si do 
18:   foreach cluster C’∈ (Si \ C) do 
19:   if (D(C,C’) > cluster_distmax) 
20:    cluster_pairmax = (C,C’) 
21:    cluster_distmax = D(C,C’) 
22:  endif 
23:   done 
24:  done 
25:  M = cluster_pairmax,1 ∪ cluster_pairmax,2 
26:  Si+1 = (Si \ { cluster_pairmax,1 , cluster_pairmax,2}) ∪ M 
27:  Delete row/column cluster_pairmax{1,2} in D 
28:  Add row/column M to D 
29:  foreach cluster C ∈ (Si+1 \ M) do 
30:   D(M,C) = D(C,M) = avgdist(M,C) 
31:  done 
32: done 

 

Figure 3. Algorithmic description of the clustering approach 

 
Figure 2. Histogram of the means of the inter-contact times 

for UCSD trace [13] 

 
Figure 1. Illustration of the node clustering approach for the 

MIT trace [6] 



4. Evaluation 
To evaluate the proposed MMPP model, we compare the inter-
contact times derived from our model to the inter-contact times of 
two comprehensive real-world traces, namely the MIT Bluetooth 
trace [6] and traces collected through the WTD project at UCSD 
[13]. Table 1 gives a short summary of some key values of the 
data. The MIT trace covers over 114,046 contacts between 96 
devices collected over 283 days. The UCSD trace lasts 77 days, 
covering over 268,899 contacts among 250 devices.  
We show that our model fits the distribution of the inter-contact 
times quite well and that this is even improved through the use of 
clustering. Additionally, we compare our model with an 
exponential and a power-law distribution and show that these 
distributions approximate the distribution of human inter-contact 
times very inaccurately. 

4.1 Trace Data 
Both data sets have a huge number of participating nodes, a long 
running time, but also a fine grained scan interval. This is 
important, because we wanted a representative amount of data 
where devices are worn by people to derive the inter-contact times 
between humans. 
In both datasets different types of contact tracing can be found. 
For the MIT experiment, users carried mobile phones (Nokia 
6600) where the Bluetooth devices scan their proximity 
(approximately 5-10m) periodically and log seen Bluetooth IDs. 
The mobile phones were given to students or faculty members of 
MIT Media Laboratory. 25 of them were given to incoming 
students of MIT Sloan business school. 
We had to map the device Ids with the person Ids, because some 
persons wore more than one device. Furthermore, note that 
contacts weren’t always bidirectional, as some contacts were only 
seen by one partner. We also had to omit one device for our 
studies, as it hadn't seen any other devices and also wasn't seen by 
any others. 
For the UCSD trace the derivation of the inter-contact times is 
conducted differently. In this study WiFi enabled PDAs were 
given to 275 freshmen at the campus. A preinstalled software 
scans periodically for access points (not only the connected one) 
and logs their Ids. We derived the inter-contact times by assuming 
that two devices can communicate with each other, when they 
share one or more access points. Although this is perhaps too 
optimistic, these assumptions were also made in previous work, 
like [10]. 
Finally, we want to remark that both data sets share some 
common types of error sources that might be taken into account. 
These errors include: 

− devices may not always been carried by the user 

− devices may not always been activated 

− devices may miss some contacts (because of the 
used scan interval or other outer influences) 

We think that these error types don’t influence our study 
significantly and can be neglected. The CCDF in log-log scale of 
the derived inter-contact times from both data sets can be seen in 
Figure 4. 
 
 

Table 1. Considered Traces 
 MIT-Trace UCSD-Trace 

Network type Bluetooth WiFi 
Devices 96 250 
Duration 283 days 77 days 
Contacts 114,046 268,899 

Scan interval 300 sec 20 sec 
Mean of inter-contact times 85 h 19 h 

4.2 Methodology 
We extracted the pair wise inter-contact times from both traces 
first. As defined in section 3, the pair wise inter-contact times are 
the intervals between consecutive beginnings of a meeting 
between two fixed nodes. While we could extract this information 
almost directly out of the MIT traces, we had to transform the 
UCSD trace to get the appropriate measurements. Therefore, we 
defined sessions where clients “see” an access point, as described 
in [13]. Note that the clients log not only access points with which 
they are actually associated, but also access points from which 
they receive beacons. We used the sessions to characterize time 
durations where two clients see each other, in particular, when 
they share an access point. Because clients could see each other 
through different access points over time, we needed to combine 
these results to model client inter-contact sessions in the same 
manner as for the MIT trace set. 
We aggregated these pair wise inter-contact times and computed 
the empirical cumulative distribution function (CDF) resp. the 
empirical complementary cumulative distribution function 
(CCDF) for both traces. Then we utilize the clustering approach 
on the data. 
To train our model on the clustered and unclustered data we 
considered a 2-state MMPP, denoted as MMPP-2, as they are 
already capable to model the conducted distributions very well. In 
case of a MMPP-2 Q and π are given by 
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The results of our parameter estimation approach can be seen in 
Table 2. 

Table 2. Estimated MMPP parameters for both traces 
 MIT-Trace UCSD-Trace 
σ1 1.0465 0.1430 

σ2 0.0949 0.0055 

λ1 2.9717 1.2301 

λ2 0.0412 0.0085 

 
 
 



Table 3. Deviation of the different approaches acc. to (18) 
 MIT-Trace UCSD-Trace 

Exponential distribution 17.86 66.18 
Power-law distribution 0.7259 0.6181 
MMPP w/o clustering 0.8189 0.4508 
MMPP w/ clustering 0.4333 0.3686 

 
 

Table 4. Deviation of the different approaches acc. to (19) 
 MIT-Trace UCSD-Trace 

Exponential distribution 0.4180 0.6139 
Power-law distribution 0.1482 0.1232 
MMPP w/o clustering 0.1497 0.0629 
MMPP w/ clustering 0.0891 0.0392 

 
 

In order to get inter-contact times distributed according to a 
MMPP-2, we evaluate the underlying Markov chain. We create 
two independent streams of points of time, whose distance is 
exponentially distributed with rate λi. We slice through the 
streams by simulating the underlying CTMC defined through Q. 
As long as the CTMC is in state i, the arrivals occur according to 
stream i. From the so formed sequence of times, we derive the 
inter-contact times by simply subtracting consecutive times. 
To visualize the results of this process, we created synthetic data 
out of the different models. To take the different cluster sizes into 
account, we combined the data produced for each cluster in a 
weighted manner. Then the empirical CDF resp. CCDF was 
computed for all traces. 
We also compare our results with an exponential and a power-law 
distribution. To fit the exponential distribution to the empirical 
data, we set the rate λ to 1/m where m is the mean value of the 
aggregated trace inter-contact times. For the power-law 
distribution [10], we used linear regression in the CCDF to set t0 
and α accordingly. 
We used two methods to measure the deviation from trace data. 
First we used a Chi-Squared based method. We sorted the original 
data traces into n equally sized (in terms of number of inter-
contact times from the original trace) bins BT

i. We then sorted the 
synthetic data of the unclustered model and that of the clustering 
approach into these bins, denoting their entries as BS

i. 
Furthermore, let mT be the number of all inter-contact times of the 
original trace and mS be the number of all inter-contact times of 
the considered synthetic trace. We further define P(BX

i) 
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as the probability for a random chosen value to be in bin i in the 
original trace resp. in the synthetic trace. We sum up the squared 
differences of the probability for a value being in bin Bi divided 
by the expected probability observed in the original trace for each 
class. The failure FX² is then defined by 
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Furthermore, we calculated the maximum difference between the 
empirical CDFs based on the Kolmogorov-Smirnov (KS) test. Let 
MT resp. MS be the set of all inter-contact times in the original 
resp. synthetic trace. Then the failure FKS is defined by 
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with FT resp. FS being the empirical CDF of the original resp. 
synthetic trace data. 
The results of the Chi-Square based method can be seen in Table 
3. We set the number of bins n to 50. We can observe that the 
exponential distribution doesn’t fit the distributions of the inter-
contact times very well for both traces. The power-law 
distribution fits quite like the MMPP model, but both are 
outperformed by the clustering approach. 
A similar observation for the Kolmogorov-Smirnov based method 
can be made in Table 4 where the maximum differences in the 
distributions are depicted. We see that the exponential distribution 
is again inaccurate. The power-law distribution is in the same 
order as the MMPP model. Again, the clustering approach fits 
best. 

4.3 Quantitative Results 
We first examine the results of our investigation of the MIT trace. 
As it can be seen in Figure 6 (lin-lin scale), half of the contact 
intervals are smaller than 12 hours. As we can clearly see the 
exponential distribution heavily underestimates this part of the 
inter-contact time distribution. The power-law distribution fits 
quite well in the first 12 hours. This is consistent with the findings 
in [10]. It can also be seen that our clustering approach fits very 
good. In Figure 8 we see the overall distribution of the inter-
contact times in log-log scale. There we see the main 
disadvantage of the power-law distribution. It decreases linearly, 
leading to a heavy tail of the distribution, which is the reason why 
it is hardly analytically tractable. The expected value of such a 
distribution is infinite. Contrary to this, the MMPP model and the 
clustering approach still fit the distribution when reaching the tail. 
Additionally, Figure 5 depicts the distributions of the found 
clusters for the MIT trace determined by the clustering algorithm. 
The figure shows that the node clusters indeed behave different 
with respect to the distribution of the inter-contact times. 
When we examine the inter-contact times of the UCSD data in 
Figure 7 (lin-lin scale) and Figure 9 (log-log scale), we can see a 
similar observation. Again, the exponential distribution model is a 
poor approximation for the distribution of the inter-contact times. 
It underestimates the first 12 hours and falls down too fast in the 
tail of the distribution. Although a good estimation for the first 12 
hours, the power-law distribution can’t be used after that time 
span. Again, the MMPP model serves as a very good 
approximation for the distribution, although it falls down a little 
too fast in the tail. The clustering method is the best approach. It 
estimates both very well, the head, i.e. the first 12 hours, and the 
tail of the distribution. 
 



 
 
 

 
Figure 9. CCDF of inter-contact times for UCSD traces. 

 
Figure 8. CCDF of inter-contact times for MIT traces. 

 
Figure 7. CCDF of inter-contact times for UCSD trace 

(first 12h). 

 
Figure 6. CCDF of inter-contact times for MIT trace 

(first 12h). 

 
Figure 5. CCDF of inter-contact times for clusters 

found in MIT trace. 

 
Figure 4. CCDF of inter-contact times for both traces. 



5. CONCLUSION 
In this paper, we presented an analytically tractable mathematical 
approach for modeling the distribution of human inter-contact 
times. We showed how a Markov-modulated Poisson process can 
be employed to characterize the long-term dependencies in the 
patterns of human contacts. We further proposed a graph-based 
clustering approach that takes different user groups with 
inhomogeneous mobility patterns into account. By comparing our 
model with two comprehensive real-world trace data sets, we 
further showed that our approach is a good choice to estimate the 
distribution of human inter-contact times and that it is able to 
closely approximate the dichotomy of this distribution, while still 
being analytically tractable. 
For future work we plan to employ our MMPP model to 
quantitatively evaluate new opportunistic forwarding protocols. 
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