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Abstract

This paper introduces an efficient numerical algorithm for the steady-state analysis of deterministic and stochastic Petri
nets (DSPNs) without structural restrictions on the enabling of deterministic transitions. The method rests on observation,
at equidistant time points, of the continuous-time Markov process that records tangible markings of the DSPN and
remaining firing times associated with deterministic transitions. This approach results in the analysis of a general state
space Markov chain whose system of stationary equations can be transformed into a system of Volterra equations. The
techniques of this paper are also applicable to queueing networks, stochastic process algebras, and other discrete-event
stochastic systems with an underlying stochastic process which can be represented as a generalized semi-Markov process
with exponential and deterministic events.
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1. Introduction

Deterministic and stochastic Petri nets (DSPNs) are a stochastic modeling formalism with graphical
representation which include both exponentially distributed and deterministic delays. Under the restric-
tion that in any marking of a DSPN at most one deterministic transition is enabled and timed transitions
have the execution policy “race with enabling memory” [1], Ajmone Marsan and Chiola introduced
a numerical method for computing the steady-state solution of a DSPN using an embedded Markov
chain (2]. More recently, Choi, Kulkarni, and Trivedi have observed that the marking process of such
DSPNs is a Markov regenerative stochastic process and showed how to obtain transient and stationary
distributions [4]. Under the same restriction, Telek and Bobbio showed that the marking process of a
DSPN in which timed transitions have the execution policy “race with age memory” [1] can also be
represented as a Markov regenerative stochastic process [17]. Several efforts aiming at development of
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numerical methods for steady-state analysis of DSPNs with concurrently enabled deterministic transi-
tions have been reported. Ciardo, German and Lindemann have shown that DSPNs with concurrently
enabled deterministic transitions can be analyzed by a Markov regenerative process, provided that the
concurrently enabled deterministic transitions fire at the same time [6]. To relax this restriction, German
and Lindemann have proposed the use of supplementary variables [7] that incorporate the elapsed firing
times of deterministic transitions into a state description of a DSPN and analysis of a continuous-time
Markov process with continuous state space [10]. However, the practical applicability of this approach
is limited because it requires numerical solution of a system of partial differential equations with
complicated boundary value functions.

In this paper, we introduce an efficient numerical method for the stationary analysis of DSPNs
with concurrently enabled deterministic transitions. The numerical method is based on the analysis
of an appropriately embedded general state space Markov chain (GSSMC), rather than analysis of
the continuous-time Markov process as in the method of supplementary variables. The GSSMC is
defined by observation, at equidistant time points, of the continuous time Markov process that records
tangible markings of the DSPN and remaining firing times associated with deterministic transitions.
This embedded GSSMC and the continuous-time Markov process have the same limiting distribution,
provided that limits for the Markov process exist.

The stationary equations of the embedded GSSMC comprise a system of integro-differential equa-
tions with constant boundary conditions. Using integration by parts, this system of integro-differential
equations can be transformed into a system of Volterra integral equations of the second type, for
which standard numerical solution methods are available [3]. Numerical methods for such systems are
considerably simpler than any numerical method for solving a system of partial differential equations
as required by the approach of supplementary variables [10]. The Volterra integral equations contain
entries of the transition kernel of the GSSMC (heuristically, that is a family of probability matrices)
which specify probabilities of its state transitions as functions of clock readings. We illustrate how for
fixed values of clock readings the entries of the transition kernel can be numerically determined by
extending the concept of subordinated Markov chains [14]. As a consequence, the proposed numerical
method based on analysis of the embedded GSSMC has a number of advantages over the method
of supplementary variables [7]. The numerical method introduced in this paper is also applicable to
queueing networks, stochastic process algebras, and other discrete-event stochastic systems with an
underlying stochastic process which can be represented as a generalized semi-Markov process with
exponential and deterministic events.

The remainder of this paper is organized as follows. In Section 2 we show how to define the general
state space Markov chain for underlying a DSPN with concurrent deterministic transitions and outline the
numerical computation of its transition kernel. The derivation of the stationary equations is presented in
Section 3. To illustrate the proposed numerical method, in Section 4 we apply the method for steady-state
analysis of a DSPN of a M/D/2/K queueing system. Finally, concluding remarks are given.

2. The approach based on a general state space Markov chain
2.1. The marking process of a deterministic and stochastic Petri net

Formally, a Petri net is a directed bipartite graph with one set of vertices called places (drawn as
circles) and the other called transitions (drawn as bars). Places may contain tokens which are drawn as
dots. Places and transitions are connected by directed arcs or inhibitor arcs (drawn with an circled head).
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Arcs may be labelled with integer numbers denoting their multiplicity. The default multiplicity of an
arc is one. A transition is said to be enabled, if all of its input places contain at least as many tokens
as the multiplicity of the corresponding input arc and all of its inhibitor places contain less tokens than
the multiplicity of the corresponding inhibitor arc. A transition fires by removing from each input place
as many tokens as the multiplicity of the corresponding input arc, and by adding to each output place
as many tokens as the multiplicity of the corresponding output arc. In deterministic and stochastic Petri
Nets (DSPNSs [2]) three types of transitions exist: immediate transitions drawn as thin bars fire without
delay, exponential transitions drawn as empty bars fire after an exponentially distributed delay whereas
deterministic transitions drawn as black bars fire after a constant delay.

The numerical analysis of DSPNs proceeds by computing transient or stationary distributions for its
underlying continuous-time stochastic process {S(¢): ¢ > 0}, which is denoted as the marking process
of the DSPN. The state space of the marking process is defined by tangible markings and its state
transition diagram is given by the tangible reachability graph of the DSPN. Since the deterministic
distribution does not show absence of memory, a proper definition of the stochastic behavior of DSPNs
requires the specification how the selection of the next transition to fire is performed and how the
model keeps track on past history. Such formal specifications for the semantics of transition firings in
DSPNs have been introduced in [1]. Such a set of specifications has been called an execution policy
and specifies the method for computing the remaining firing time of timed transitions after a marking
change. Throughout this paper, we assume that among all enabled timed transitions in a DSPN the
one with the minimum remaining firing time determines the next marking change. Furthermore, after
a marking change each timed transition newly enabled samples a remaining firing time from its firing
delay distribution and each timed transition, which has already been enabled in the previous marking
and is still enabled in the current marking, keep its remaining firing time. This stochastic behavior
corresponds to the execution policy race with enabling memory as defined in [1] and also coincidences
with the state transition mechanism in a generalized semi-Markov process [11].

We allow exponential transitions to have a marking-dependent firing delays whereas firing delays of
deterministic transitions have to be fixed. Furthermore, we assume that the reachability graph of the
DSPN comprises of a finite number of markings and we define the set S of tangible markings by

S={1,2,...,N}.

Following Haas and Shedler [13], the marking process of such DSPNs can be represented as a finite-
state generalized semi-Markov process (GSMP) with exponential and deterministic events. A GSMP is
a continuous time stochastic process {S(¢): ¢ > 0} that records the tangible marking of the DSPN as it
evolves over time. Thus, tangible markings of a DSPN correspond to states of the GSMP. Exponential
and deterministic transitions of the DSPN define exponential events and deterministic events of the
GSMP, respectively. Timed transitions enabled in a tangible marking of a DSPN correspond to the set
of active events, associated with a state of the GSMP. Preempting the firing of a timed transition can
easily be represented in the state transition mechanism of a GSMP by cancelling the corresponding
event. Compound transition probabilities specifying the probability of firing sequences of immediate
transitions after the firing of a timed transition of DSPN are represented by state transition probabilities
of the GSMP valid after the occurrence of the event corresponding to this timed transition. To simplify
the computation of these compound transition probabilities, we restrict the discussion to DSPNs for
which firing weights associated with immediate transitions can be specified on the net level [5], i.e., the
DSPN is confusion-free. Marking-dependency by a scaling factor as defined in [1] can be represented in
a GSMP by state-dependent definitions of speeds associated with events.
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2.2. The embedded general state space Markov chain

Enumerate the deterministic transitions of the DSPN by 1,17, ...,y and define D,, to be the
firing delay of transition #,, (1 < m < M). Let C,(¢) be the remaining firing time associated with
deterministic transition #,, at time ¢, In any state in which deterministic transition #,, is not enabled,
we define C,(r) = 0. Then, using the method of supplementary variables [7], we can derive a
continuous-time Markov process {X (z): ¢ > 0} with general (continuous) state space

X)) = (S(), Ci(2), Ca(t), ..., Cul(2)).

Unfortunately, when deterministic transitions are concurrently enabled, the practical applicability
of this approach is limited because the stationary analysis requires numerical solution of a system of
partial differential equations with complicated boundary value functions [10]. Therefore, we consider
a discrete-time stochastic process {X(nD): n > 0} by observing of the process {X(¢): + > 0} at a
sequence {nD: n > 0} of fixed times for some appropriately defined step size D > 0

X(nD)=(S(nD), Ci(nD), Cy(nD), ...,Cy(nD)). (1)

Heuristically, S(n D) represents the state (tangible marking of the DSPN) and C,,(n D) represents
the mth component of the clock-reading vector (remaining firing time of deterministic transitions z,,)
at time n D. The memoryless property of the exponential distribution implies that {X(nD): n > 0} is
a GSSMC, i.e., it satisfies the Markov property. If {X(nD): n > 0} is an aperiodic, positive recurrent
chain with a regeneration set; that is, {X(nD): n > 0} is a Harris ergodic chain [9], the discrete-time
process {X (nD): n > 0} has a unique stationary distribution. Otherwise, the presented approach allows
the computation of time-averaged distributions. Using such a “stochastic skeleton approach”, for the
case that a stationary distribution exists, we have

tli%lop {X() € A} = lim P{X(nD) e A} (2)

for any appropriate (i.e., “measurable”) set A. In particular, by considering the sets A = {i} x [0, D;] x
[0, D3] x---x [0, Dy]for1 <i < N, we can conclude that the stationary or time-averaged distribution
of the discrete-time process {S(nD): n > 0} is equal to the stationary or time-averaged distribution
of the continuous-time process {S(z): ¢ > 0} which represents the marking process of the DSPN. If a
stationary distribution exists, that is

rlim P{S(t)=i}l= lim P{SnD)=i} forl<i<N. (3)

Using Eq. (3), we show that the stationary analysis of the marking process {S(#): ¢ > 0} requires only
numerical transient analysis of appropriately defined continuous-time Markov chains and the numerical
solution of a system of Volterra integral equations of the second type. As shown in [3], numerical
methods for such systems are considerably simpler than any numerical method for solving a system of
partial differential equations as required by the approach of supplementary variables [10].

To determine the value for the step size D, so that stationary analysis of the GSSMC is numerically
as simple as possible (i.e., all entries of its transition kernel can be computed using numerical transient
analysis of continuous-time Markov chains and do not require transient analysis of more general
stochastic processes), we observe forn > 0

(1) when deterministic transitions have the same firing delay (i.e., Dy = Dy = -+ = Dy) all
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deterministic transitions which are already enabled at time n D, fire or get preempted before time
(n+1)Dy.

(ii) when deterministic transitions have the same firing delay, deterministic transitions that become
newly enabled in the interval (n Dy, (n + 1) D] cannot fire prior to time (n + 1) D;.

Thus, for this case, we define the time step D of the GSSMC as D = D). Note that, in general,
the discrete-state stochastic process {S(nD): n > 0} does not satisfy the Markov property, i.e., is not
a discrete-time Markov chain. However, for some interesting special cases this process is indeed a
discrete-time Markov chain (see e.g., the stationary analysis of the M/D/k queueing system for any
k > 1 [8]). Moreover, for a large gamut of cases, the discrete-state stochastic process {S(nD): n > 0}
is almost a discrete-time Markov chain since most of the entries in the transition kernel of the GSSMC
are constants (i.e., independent from the remaining firing times of deterministic transitions).

Now, let us consider the case that deterministic transitions have different firing delays. As shown in
[16], by defining the time step D of the GSSMC as

D = min{Dy, D, ..., Dy} 4)

all entries of its transition kernel can also be computed using numerical transient analysis of continuous-
time Markov chains. To provide a unified scale for the clock readings for deterministic transitions, for
1 <m < M andn > 0, we define:
¢ the scaling factor «,, associated with deterministic transition t,, given by «,, = | D,/ D],
o the lower subinterval (nD,nD + §,] associated with deterministic transition ¢, of the interval
(nD, (n + 1)D], where §,, = (a;, + 1)D — D,,,
e the upper subinterval (n D + §,,, (n + 1) D] associated with deterministic transition ¢, of the interval
(nD, (n+ 1)D].
We denote the length of the upper subinterval (n D + §,,, (n + 1) D] by v, that is,

According to these definitions, 8,, + y,, = D for 1 < m < M. If D, is an integer multiple of D that
is, D,, = o, D, then §,, = D and y,, = 0. Now, we observe

(iii) deterministic transitions that become newly enabled in the interval (n D, (n + 1) D] cannot fire
prior to time (n + 1) D.

(iv) when a deterministic transition z,, becomes enabled in the lower subinterval (n D, n D + §,,], its
remaining firing time at time (# 4+ 1) D must lie in the interval ((a,, — 1) D + Y, am D]. Consequently,
deterministic transition ¢,, fires «,, intervals later. That is during the interval ((n +a,, — 1) D, (n+a,) D].

(v) when a deterministic transition z,, becomes enabled in the upper subinterval (n D + §,,, (n + 1) D],
its remaining firing time at time (n + 1) D must lie in the interval («,, D, &, D + ¥, ]. Consequently, deter-
ministic transition t,, fires ¢, + 1 intervals later. That is during the interval ((n + a,) D, (n + «p, + 1) D].

From the definitions of the lower and upper subinterval follows that if D,, is an integer multiple of
D (that is, D,, = «p, D), deterministic transition f,, fires in the interval ((n + «,, — 1) D, (n + «,,) D]
irrespective of when it became enabled in the interval (n D, (n + 1) D].

2.3. The transition kernel

The stationary analysis of the GSSMC {X(nD): n > 0} is based on its transition kernel which
specifies probabilities for state transitions in the GSSMC. Recall that we assume that the marking
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process underlying the DSPN consists of N tangible markings (subsequently denoted as states). For
ease of exposition, we restrict the discussion to DSPNs in which at most two deterministic transition
may be concurrently enabled. Then, the subset of states in which only exponential transitions are
enabled is denoted by Se,. Similarly, the subsets of states in which one deterministic transition and
two deterministic transitions are (concurrently) enabled are denoted by Sge;; and Sgerz, respectively. We
enumerate these states as follows

Sexp = {1,2,...,N1},
Ste1 ={N1+ 1L, N +2,..., N + N>}, 3)
Sdet2={N1+N2+1,N1+N2+2,...,N}.

The transition kernel is a square matrix of dimension N and, in general, its ij-entries are functions
of clock readings associated with the current state i and intervals for clock readings associated with
the new state j. Due to the construction of the GSSMC {X(nD): n > 0} described in the previous
section, for DSPNs with at most two deterministic transitions concurrently enabled, the transition kernel
of the underlying GSSMC can be written as P(cy, ¢3, a1, a;). Subsequently, its ij-entries are defined as
conditional probabilities that the next state is j with clock readings C; € [0, a;] and C; € [0, a;] given
that the current state is { with clock readings C; = ¢; and C; = ¢5.

pij(c1, ¢2,a1,a2) =P {S((n+1)D) = j, Ci((n + 1) D) < ay, C((n + 1) D) < ay,
| SmD) =i, Ciy(nD) =cy, Co(nD) = ¢3}. (6)

With Eq. (6) and definition (5), the general form of the transition kernel P(cy, ¢3, @y, az) for the GSSMC
underlying a DSPN in which all deterministic transitions have the same firing delay D and in any
marking at most two deterministic transitions are concurrently enabled can be written as a composition
of 9 submatrices P;;(-) of appropriate dimension for 0 < ¢, ¢; < D and 0 < ay, a» < D. For the case
¢1 < ¢ and a; < a, the transition kernel has the form:

- - 1
Pyi(az) Pi2(ai, az) Pia(ar, a2)
Ny
N +1
Py (c1, a2) Px(ci, a1, az) Pai(cy, ar, az)
P(ci, 2, a1, a2) =
N+ N,
Ni+ Ny +1
P3i(cy, a2) Py (c1, 02, a1, a2) P33(c1, €2, a1, az) :
L 4 N
1 M Ni+1 N+ N Ni+N,+1 N

For ¢; > ¢, and a; < a; the transition kernel P(c;, ¢3, a1, @») is of similar form. The only difference
lies in that submatrix P3; (-) may depend on ¢, instead of ¢y, i.e., for ¢; > ¢, and a; < g, this submatrix
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is of the form P3;(c2, a»). It is important to observe that the transition kernel is symmetric with respect
to ¢; < ¢ and c¢; > ¢,. Thus, it is sufficient to compute the kernel matrix just for the former case. Note
that for a large number of applications, most of the ij-entries of the transition kernel P(cy, ¢2, a1, a») are
non-negative real numbers, i.e., they do not depend on the remaining firing times ¢; and/or c,. In the
special case that all ij-entries of P(cy, ¢, a;, a;) are independent from ¢, and c;, the transition kernel
can be considered as a probability matrix for a discrete-time Markov chain for any fixed value of a; and
a; (see e.g., the analysis of the M/D/2 queueing system [8]).

The transition kernel of the GSSMC underlying a DSPN in which deterministic transitions of the
DSPN have different firing delays, say Dj, Dy, ..., Dy, and in any marking at most two determin-
istic transitions are concurrently enabled is also of the form P(cy, c3, a1, a2) and can be written as
composition of 9 submatrices as shown above. However, for this case using observation (iv) and
(v) a state 1 in which a deterministic transition with firing delay D,(, > D is enabled (thus, the
remaining firing time lies in the interval (0, Dy,)]) is split into o,y states, denoted by (i, k), with
k=0,1,..., 0mu — 1, such that the remaining firing time of the deterministic transition lies in state
(i, k) in the interval (kD, (k + 1) D] and in a state (i, @) in which the remaining firing time lies in the
interval (o) D, @miyD + Ym()]- Due to this splitting of such states i and j in which one deterministic
transition with firing delay D,,) and D, are enabled, respectively, each ij-entry p;j(c1,ai, az) of
the submatrix Py, (c;, a1, ay) of the transition kernel P(c;, ¢;, a;, a») results in a rectangular matrix of
dimension &,y + 1 X @p(;) + 1. Accordingly, ij-entries of other submatrices of the transition kernel
result also in vectors or rectangular matrices.

Using observation (iii) to (v), we distinguish the following three cases for ij-entries of the submatrix
Pxy(cy, a1, ap) of the transition kernel:

(1) the deterministic transition fires in the interval (n D, (n + 1) D]. Then, corresponding ij-entries of
the transition kernel are of the form

PG.0)G.amy—1) (€15 a1, a2)  for 0 < ¢ < 8m(),
p(,-yo)(j,%(j))(cl, a, a) for 8m(jy <1 < D.
(2) the deterministic transition becomes preempted in the interval (n D, (n + 1) D]. Then, correspond-
ing ij-entries of the transition kernel are of the form
Pa1Guamp—n (€1 a1, a2) for0 < ¢ < dpgyand 1 <k < apg),
PGk i) (cy, ay, az) fordm(jy < ¢y < Dand 1 <k < aps).

(3) the deterministic transition does not fire in the interval (n D, (n + 1) D] and is still enabled at time
(n + 1) D. Then, corresponding ij-entries of the transition kernel are of the form

p(,-,k)(j,k_l)(cl, a, az) forQ < c1 < Dand 1 < k < Uiy

In [14], the concept of subordinated Markov chains for the efficient algorithmic computation of the
probability matrix of the embedded discrete-time Markov chain underlying a DSPN without concurrent
deterministic transitions has been introduced. A subordinated Markov chain of a deterministic transition
is a continuous-time Markov chain whose generator matrix is given by firing rates of exponential
transitions concurrently and/or competitively enabled with this deterministic transition and correspond-
ing compound transition probabilities corresponding to probabilities for firing sequences of immediate
transitions.
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(1) Construction of the tangible reachability graph of the DSPN which defines state
transition graph of the GSMP. Derivation of generator matrices for continuous-time
Markov chains subordinated to each state i (1 <i < N).

(2) Numerical computation of the ij-entries of the transition kernel by transient analy-
sis of subordinated Markov chains and subsequent summation of appropriately se-
lected transient state probabilities (see [16] for a detailed description).

(3) Derivation of the stationary equations of the GSSMC which constitutes a system of
Volterra integral equations of the second type. This step is described in Section 3.

(4) Numerical solution of the system of Volterra integral equations by using a Volterra—
Runge—Kutta method or by employing an appropriate (multi-dimensional) Gauss
quadrature formula (see [3] for details on such numerical methods).

(5) Computation of the stationary probabilities of the marking process of the DSPN from
the solution of the Voiterra integrat equations using the normalization condition (see
Egs. (11) and (21)).

Fig. 1. High-level description of the proposed numerical algorithm.

In the same way, we can now define a subordinated Markov chain for each tangible marking (state) of
the DSPN, i.e., also for states in which only exponential transitions are enabled. As shown in [16], due to
observations (i) to (v), ij-entries of the transition kernel which depend on ¢; and/or ¢; can be expressed
as appropriate sums of transient state probabilities of the subordinated Markov chains for any fixed real
values for ¢; and c; with 0 < ¢, ¢; < D. Thus, numerical computation of ij-entries of the transition
kernel requires only some summations once the transient state probabilities of the subordinated Markov
chains have been obtained, irrespective of the number of deterministic transitions enabled in states
i and j. On the other hand, computation of the transient state probabilities themselves requires a
vector-matrix multiplication at each iteration of the randomization technique [12]. As a consequence,
the number of deterministic transitions concurrently enabled in tangible markings of the DSPN hardly
influences the effort required for computation of ij-entries of the transition kernel. Furthermore, this
effort can be reduced for many DSPNs by exploiting isomorphisms and special structure of subordinated
Markov chains as proposed for the transient analysis of subordinated Markov chains of a DSPN without
concurrent deterministic transitions [15].

2.4. Algorithmic description

Figure 1 summarizes the steps of the proposed numerical method for computing steady-state distri-
butions of DSPNs with concurrently enabled deterministic transitions. The computational complexity of
the method arises mainly from numerical computation of the ij-entries of the transition kernel in step
(2) and solution of the system of Volterra integral equations in step (4). Note that the generation of the
tangible reachability graph of the DSPN and the construction of the GSMP underlying the DSPN in step
(1) requires the same asymptotical effort as for DSPNs without concurrent deterministic transitions. The
computational effort of steps (3) and (5) are negligible since they require only a constant number of
operations for each tangible marking of the DSPN.

3. The system of stationary equations

Using (3) and (5), we define stationary probabilities 7; for i € Sexp, mi(ar) for i € Sgen, and
n(ay, ay) fori € Sgerp of the GSSMC underlying a DSPN in which two deterministic transitions may be
concurrently enabled.
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= lim P{S(nD) =i} = lim P {S(:) =i} forl <i < Ny,
mi(ay) = nl-i->nolop {SnD) =i, C;(nD) < ar}
= ,l_ifgop{s(t) =i, C1(t) < a} for Ni+1<i< N+ N,
mi(ay, ap) = lim P{S(nD) =i, Ci(nD) < a1, &(nD) = ar}
= zl_ifgo P{S(t) =i, C;(t) < a;, C(t) < az} for Ny+ N, +1<i<N.

From observation (i) and (ii) together with the definition of a stationary measure of a GSSMC (see
e.g., [11]) follows that for a DSPN, in which all deterministic transitions have the same firing delay D,
the stationary equations of the underlying embedded chain {X (nD): n > 0} are of the form

N Nitte o g (o)
”i=Z7Tj'Pji(a2)+ Z / i - pji(cr, az) dc

St da
2927 (cy, € )
/ / PR er,an) der des %
J=Ni+Na+1 €10¢2

forl<i<Nyand0 < ay,a; < D with ¢; < ¢; and a; = a3.

0 dC

mi(a1) —Zn, pji(a, a2) + - pjiler, a1, @) dey

j=N+1

2 9, (c , C )
‘N1+N2+1 c10¢y

for Ny+1<i <N+ Nyand0 < a;,a; < Dwith¢; < c¢; and a; = a.

Nt N> /“‘ dm(cy)
0

- pjiler, ai, ap)dey

Ny
mi(a1, az) —Zﬂj - pjilar,a2) + Z

= j=N;+1 dc
(43 3
+2- f / Lt pjici, ca,ar, @) derdey
—N1+N2+1 ac}acz
ay 8
f / zjler, ) - pji(ca, a1, ap) deydey @)
j=N+N+1Y 4 derdey

for N+ N, +1<i<Nand0 <ay,a; < Dwithc) <c;anda; < a,.

In Eq. (9), expressions of the form p;(c2, a1, az) are derived from the kernel elements p;;(c1, 2, a1,
a;) by projection from the two-dimensional plane [0, a;] x [0, a;] on the one-dimensional line [a1, az].
Equations (7) to (9), in general, comprise a system of integro-differential equations with constant
boundary conditions

7:(0)=0 forNi+1<i <N +N,,
7;(c1,0) =0 forNj+ N, +1<i<Nand0 <c <D,
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7:(0,c2) =0 for N+ Na+1<i<Nand0<c; <D. (10)

The system of integro-differential Egs. (7) to (9) together with the boundary conditions (10) and
the normalization Eq. (11) uniquely determine the stationary probabilities of the marking process of a
DSPN with markings enabling two deterministic transitions with firing delay D, concurrently.

N Ni+N» N
Smi+ Y, md+ Y, mD.D=1 (11)
j=1 Jj=Ni+1 j=Ni+N2+1

This system of integro-differential equations can be transformed, using integration by parts and the
boundary conditions into a system of Volterra integral equations of the second type. Using integration
by parts, single integrals with a first derivative of a stationary probability are transformed into a sum of
two terms. For example, we have

dp;i(cy, ar,
D (C(; ap a2)dc1.
“ (12)

“dmi(c) “
fo e - pji(cy, a1, ap) dey =n'j(al)Pji(Cl,al,a2)‘cl=al _./0 7;(cr)

With symbolic integration with respect to ¢; and with integration by parts, a rectangular double
integral with a second partial derivative is transformed into an expression which contains two products
of the stationary probability with kernel elements and a single integral of the product of the stationary
probability and the corresponding partial derivative of the kernel element. Thus, we have

“ [N 97 (c1s 02)
jler, €2 ~ ~
— L= . pji(c2, a1, ;) deydey = malar, a2) - pji(ca, a1, @), _
C a;

a 0 3C18C2 =02

a 5
— m(ar, a1) - pjicy, ar, az)\cﬁa‘ - /a. m2(ay, az)a—p’i(caz—;:-ﬂd% (13)
A triangular double integral with a second partial derivative can be transformed into a rectangular
integral using the substitution ¢; := c¢i¢2/a; and, then, integration by parts can be applied twice. Thus,
we can replace all (partial) derivatives of stationary probabilities in the system of Egs. (7) to (9) by
(partial) derivatives of kernel elements. Since the former are unknown functions, whereas the latter can be
numerically determined using the Chapman—Kolmogorov equation for continuous-time Markov chains
with discrete state space (see [16] for details), this transformation simplifies the numerical solution of
the stationary equations, considerably. In fact, besides the numerical computation of kernel elements and
their derivatives, we only have to solve a system of Volterra integral equations of the second type, for
which standard solution methods are available [3]. From formulas (7) to (13), it should be clear that the
proposed approach for deriving stationary equations of the GSSMC can be extended in straight-forward
manner to the case of DSPNs in which L > 2 deterministic transitions are concurrently enabled. The
resulting system of Volterra integral equations then comprises terms with L-dimensional integrals.
Numerical solution methods for Volterra equations are based an appropriate discretization scheme
for integral expression and solution of a linear system of equations for each mesh point. Thus, the
main memory requirements of the proposed method are of the same order as for numerical steady state
analysis of DSPNs without concurrent deterministic transitions [14] whereas the computational effort is
higher, since not just one linear system of equations needs to be solved. However, the additional effort
is still reasonable; in particular, the overall effort for solving the Volterra equations is not given by the
product of the number of mesh points and the effort of solving the first linear system. This is because for
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solution of subsequent linear systems considerably fewer iterations are required than for solution of the
first linear system, since the solution of the linear system for the previous step is chosen as start vector
for the iterative solver.

To deal with deterministic transitions with different firing delays, consider a state i in which one
deterministic transition with delay Dy i is enabled. Using observations (iii) to (v), we split the stationary
probability 7;(a1) with 0 < a; < Dy into 20 + 1 stationary probabilities

nifk(al) fork=0,1,...,0m@ with kD < a1 < kD + Vmi)» (14)
Jr,.fk(al) fork=0,1,...,0me — 1 with D + Ymay < a1 < (k+1DD. 15)

When at most one deterministic transition may be enabled in any marking of the DSPN, the stationary

equations of the GSSMC {X(nD): n > 0} are of the form

N, N Am(j) paj d”j_k(cl)
m =y 7 pii@) + >, 1(a.sym(,-))Z/0 —L = piwlcr, a) de
j=1 J

=N+ 1 k=0 de;
N @) evm dir(C1)
Jk\E1
+ Z 1@>Ymiin) (Z/ — e - pmler ar) de
j=Ni+1 k=0 V0 1
(“‘rn(j)'_1 ay djr;:k(cl)
+ —de PG o€l + Y, @) de (16)
k=0 Y VYm() Q
forl<i<Nyand0 <a; = D
N, Ny @m(j) a dﬂ— (C )
- _ ik 1
Ty (@1) —Zﬂj © P Gsaman (@) + Z Loy <yme) f de + PG R Gam) (€15 @1 dCY
j=1 j=Ni+1 k=0 v0 1
N %) rvm) dr o (c1)
jik N1
+ Z 1(a|>ym(j)) (Zf ————dc . p(j,k)(i,am(,-,)(cl, al)dcl
j=Ni+1 k=0 Y0 I

amp—l  pay dﬂ';,_k(cl)
+ — e
¥

dor PG Gaman (€1 F Ym(i)s ai) dCl) a7

k=0
for Ny + 1 <i< N and 0 < a1 < Ym)-

m(J)

Ny
+
A O ey D 7 - Piane-n @)

j=1
Ny Am(j) ay dn-— (c )
A
+ Z 1(a|5ym<,-;) Z[ —_———dc 'P(j,k)(i,a,,,(,»)-l)(Chal)dc1
j=Ni+1 k=0 Y0 1
N any) pvmy) drr(C1)
kL
+ Y lesmw (Z/ “de * PGk~ (€1, a1 dC
j=Ni+1 k=070 1

+

am(jy—1 +
mi) fa‘ dﬁj,k(cl)
¥ dC1

< PGBy sanp-D (€1 T Ym(i)s 1) dc1> (18)
k=0

for N; + 1 <i < N and Ym@) <a; < D.

m(j)
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Additional equations are needed to uniquely determine the stationary probabilities 7;,(a;) and
;% (a1). These equations are of the form

N o padng(e)
Thi@)= Y / ”;’—“P(j.k)(s,k—n(cl,m) dey (19)
=N 4170 1
forO < a; < VYm(i) andk=1,2,..., Uy (i)-
Nore dmfien)
mhq (@) = Z / —‘Li'kc——P(j.k)(i,k—l)(Cl + Ym(), @1) dcy (20)
j=Ni+1 Y Ymi) !

for ymi <a1 < Dandk=1,2,...,apu — 1.
The normalization equation is

Ni N @mj—1
Dot D ( > (”Ik(D) +7f,-_,k()/m<j))) +7T,~_,am(,,(7m(j))) =1 (21)
j=1 j=Ni+1 \ k=0
The stationary equations comprise a system of integro-differential equations of the same form as
when all deterministic transitions have the same firing delay. The system of equations has the constant
boundary conditions

7 Ymi) =0 forO <k <apmp—1 andN;+1=<i=<N,
770 =0 for0<k<omp  andN,+1<i<N. (22)

Using integration by parts as discussed above, we obtain a system of Volterra equations of the second
type which can be solved numerically with the same techniques as the system of Egs. (7) to (10).
Subsequently, the stationary probability of the marking process underlying the DSPN for a state i, in
which a deterministic transition with firing delay D,,;) is enabled, is given by

Um(iy—1
ﬂi(Dm(i)) = Z (”,&(D) + ﬂi,—k(ym(i))) + ”i,_am(‘.)(}’m(i))~ (23)
k=0

Recall that if Dy = D, then dpmgy = 1, 8wy = D, and iy = O for a state i. In this case,
stationary Egs. (10) and (11) reduce to equations of the form (1) and (2), but without the double integral
expressions. Equation (12) is obsolete since ym() = 0. From Egs. (17) and (18), it should be clear how
the stationary equations of the GSSMC are derived for a DSPN in which several deterministic transitions

(with possibly different firing delays) are concurrently enabled.

4. An example: The M/D/2/K queueing system

To illustrate the derivation of the transition kernel for a GSSMC underlying a DSPN with concurrently
enabled deterministic transitions, we consider a DSPN of a M/D/2/K queueing system. Figure 2 shows
a DSPN for this queueing system. The K tokens residing in place pg in the initial marking represent
the finite number of buffers of the queueing system. All arcs of the DSPN have multiplicity 1. The
exponential transition #; has the mean firing delay 1/A and represents the Poisson arrival stream of
customers. Tokens contained in place p; represent customers waiting in the queue. Tokens contained
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Server 1

idle. p4
[ ]
Start service
at station 1t6 PO
[ ’I_

Server I Servicel,t]
Decision,p7 Accepted;ts busyp2
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ource, Arrival,t3 pustomers Server 2
P6 in queue,pi busy,p3 Service2,t2

Turned
away,ts Start service
at station 2.t7
(D=
Server 2
idle,ps
K———-( K) . p

Capacity pg
Fig. 2. DSPN of the M/D/2/K queue with customers turned away.

in the places p; and ps3 represent customers currently being served. The constant service requirements
are modeled by the deterministic transitions #; and #, which have firing delay D. For ease of exposition,
we assume that the immediate transitions g and #; have both associated the firing weights 1/2, such
that arriving customers to an empty system join each server with equal probability. The DSPN of the
M/D/2/K queue with customers turned away is of particular interest because complex DSPNs often
contain subnets which are equivalent to this DSPN. Tangible markings of this DSPN can be uniquely
specified by the numbers of tokens residing in places p;, p;, and ps3. Defining the state number
s = #p; +#p> + 2 x#p3 + 1, the set of tangible markings (state space of the GSMP) can be written as
S =1{1,2,..., K + 2} where using (5) we decompose the set S in

Sexp = {1}, Saenn = {2,3}, and  Sger ={4,5,..., K +2}.

Thus, we have Ny = 1, N, = 2, and N = K + 2. Figure 3 shows the tangible reachability graph
of the DSPN of Fig. 2 which also defines the state transition graph for the corresponding GSMP. The
transition kernel P(cy, ¢2, a;, a2) of the GSSMC contains the following three different types of entries:

(1) Constant entries given by Poisson probabilities which are independent from the remaining firing
times for deterministic transitions #; and .

b; = P{i arrivals in (0, D]} = @by .e P (24)

i!

fori =0,1,..., K —2.
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t3,(t4 t6) t3,(t4 te)

13,14 t3,ts

t1,tg or t1,tg or
2,17 t2,t7 t2,t7

>~

Fig. 3. Tangible reachability graph of the M/D/2/K queue with customers turned away.

i—1
B; = Pfatleast arrivalsin (0, D]} = 1 — ) by (25)
k=0
fori=2,3,..., K—1.
(2) Functional entries setting remaining firing times for deterministic transitions #; and #; (corre-
sponding to intervals for new clock values a; and a, in the GSSMC). For the case ¢; < ¢; and a; < a;
these functional entries are given by

¢o(az) = P{no arrivals in (0, @3]} = e ™%, (26)
¢1(ay, a3) = P{one arrival in (0, a;] and no arrivals in (a;, a;]}
_ Aare, @)

¢1(a; — ¢y, ap) = P{no arrivals in (0, ¢;] and one arrival in (c1, a;]
and no arrivals in (ay, a2]}
= raje”* — Acie M, (28)
¢1(ay + ¢y, a3) = P{one arrival in (0, ¢;] and no arrivals in (c{, 2]}
+ P{one arrival in (0, ¢,] and no arrivals in (a;, a1}
= Aaje ™ + hcie T, (29)
¢i(ay, a) = P{i arrivals in (0, D] where at least one in (0, a;] and at least one in (0, a,]}
_@DY Ly a@-a) L, KMa®@-a)
i! i! @—-n!
fori=2,3,...,K—1and0 < ay,a, < D.

(30

®x(a;, a;) = Platleast K arrivals in (0, D] where at least one in (0, a;] and at least one in (0, a>]}

e e _w’il DY (M(D=—a))  Mai(D —a)!
- e ae © k! k! & —1)!
k=2 (31

for0 < ay,a; < D.
(3) Functions taking into consideration remaining firing times of deterministic transitions #, and #,
(corresponding to old clock values ¢; and ¢; in the GSSMC). For the case ¢; < ¢; these functions are



C. Lindemann, G.S. Shedler/ Performance Evaluation 27&28 (1996) 565-582 579
given by

W;(c;) = P{atleasti arrivals in (0, ¢;] and no arrival in (¢y, D]}

_ o~MD=c) _ g-AD Z ('\Cl)k (32)

fori=1,2,...,Kand0 < ¢c| < D.

@;(c1, ¢3) = Platleast arrivals in (0, ¢,] where at least one arrival in (¢1, ¢3]
and no arrivals in (¢, D]}

(D & (xc) ey G ;.
— g MD- z)Z ! n__k?_e 2 (33)

fori =2,3,...,Kand0<cl,c2 < D.

Recall from Section 2.3 that the transition kernel of the GSSMC underlying a DSPN in which two
deterministic transition transitions with the same firing delay D are concurrently enabled can be written
as a composition of 9 submatrices P;;(-) with 1 < i, j < 3. Using the constant entries given in (24) and
(25) and functional entries of (26) to (33), for the case ¢; < ¢, these 9 submatrices of the transition
kernel P(c1, ¢z, a;, a;) of the GSSMC underlying the DSPN of Fig. 2 are given by

Pi1(a2) = [$o(a2)].
Pi(a, @) = [%d)l(a],az) %¢l(ala02)] :

P13(01’42):[¢2(a1»a2) ¢3(ar,a2) - Px_1(ar, a2) q’K(alsaZ)]’
3
Py (ay) = ¢o(az)

| $o(a2)

1 1

s¢1(ar —c1, @) 3¢1(a1 + ¢, a2)

Poler,ai,a) = | ) | ,
s¢1(ar +ci,a2) s¢1(ar — ¢y, a2)

_¢2(al, az) ¢3a,a2) - Px-1(ai, a2) + ¥x(cy) Pklai, ar) — Yk(ci)
Pylci, a1, a3) =
_¢2(al, @) ¢i(a,ax) - Prx_1(ar, @) + Yk(c1) Pklar, az) — vk(cr)
do(a2) |
0

Psi(ay) = ) )
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Fig. 4. M/D/2/2 queue: The probability distribution function (g, ).

[ Lgi@ + (2 —enya) Li(ar — (2 — ) an)
2bo 2bo
Py(cr, e, a1,a2) = 0 0 ,
0 0 ]
Pi(c1, ¢, a1, a0) =
[fo@ara) - o Pxa(an, @)+ Yror(e)  Groi(ar, @) +oxlen ) Dxlar, ) — Yroi(er) — gx(er, 0) |
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Figures 4 and 5 plot the degenerated probability functions 75(a;) and 74(a;, a;) for 0 < a; < D and
0<ay,a; < DwithA =09, D =1, and K = 2. Intentionally, we have chosen K = 2 because for this
case with @) = a; = D, analytical expressions for the stationary probabilities are known using Erlang’s

loss formula. These stationary probabilities are given by

2 AD
= , D) = D) = ,
sraprepy D =mD) =i

Y3
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Fig. 5. M/D/2/2 queue: The probability distribution function m4(a;, a,).
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The curves have been obtained by numerically solving the system of Volterra integral Eqs. (7)
to (9) using the transition kernel presented above and the corresponding normalization condition. To
numerically solve the Volterra equations, an adaptive Simpson rule is employed for approximating both
one-dimensional and two-dimensional integrals (see [3] for details) and subsequently a linear system of
equations is solved for each mesh point.

Figures 4 and 5 indicate that the stationary probabilities of the GSSMC, m,(a)), m3(a;) and wa(a;, az)
are given by

74(D, D) =

kal _ )\.261102

Y, ey, AN e WYY, NI Y,k

With some calculations using the transition kernel presented above and the system of Egs. (7) to
(9), one can verify that these expressions are indeed the symbolic solution in the continuous state
space of the GSSMC. Noting that the derivatives of my(a,;), 73(a;) and m4(a;, a2) with respect to a;
and a; and a,, respectively, are constant, the GSSMC of the M/D/2/2 queue can be simplified to a
discrete-time Markov chain with discrete state space for any fixed a; and a;. Using this Markov chain
with a; = a; = D, we can show in a new way that the steady-state distribution of the number of
customers in an M/D/2/2 queue is equal to the corresponding steady-state distribution in an M/M/2/2
queue.

my(ay) = msay) =

5. Conclusions

This paper introduced an efficient numerical method for computing stationary distributions of DSPNs
with concurrently enabled deterministic transitions based on the analysis of a discrete-time embedded
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general state space Markov chain (GSSMC), rather than analysis of a continuous-time Markov process
as in the method of supplementary variables [10]. The stochastic behavior of the GSSMC is specified
by a transition kernel which, as outlined in Section 2.3 and illustrated by the example in Section 4, can
be numerically determined using transient analysis of appropriately defined continuous-time Markov
chains. Both the stationary analysis of the GSSMC and stationary analysis of the continuous-time
Markov process lead to a system of integro-differential equations. The integro-differential equations for
the embedded GSSMC, however, can always be transformed into a system of Volterra integral equations
of the second type for which standard numerical methods are available (see e.g., [3]) whereas solution of
the integro-differential equations of the continuous-time Markov process requires the numerical solution
of a system of partial differential equation.
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