
In Proc. 3rd Int. Workshop on Software and Performance (WOSP), Rome, Italy, pp. 25-34, July 2002.

Performance Analysis of Time-enhanced UML Diagrams
Based on Stochastic Processes

Christoph Lindemann, Axel Thümmler,
Alexander Klemm, Marco Lohmann, and Oliver P. Waldhorst

University of Dortmund
Department of Computer Science

August-Schmidt-Str. 12
44227 Dortmund, Germany

http://www4.cs.uni-dortmund.de/~Lindemann

Abstract
In this paper, we propose extensions to UML state diagrams
and activity diagrams in order to allow the association of
events with exponentially distributed and deterministic delays.
We present an efficient algorithm for the state space
generation out of these UML diagrams that allows a
quantitative analysis by means of an underlying stochastic
process. We identify a particular stochastic process, the
generalized semi-Markov process (GSMP), as the appropriate
vehicle on which quantitative analysis is performed. As
innovative feature the algorithm removes vanishing states, i.e.
states with no timed events active, and considers branching
probabilities within activity diagrams. Furthermore, we
introduce a performance evaluation framework that allows a
system designer to predict performance measures at several
steps in the design process. The applicability of our approach
for practical performance and dependability projects is
demonstrated by an UML specification of the General Packet
Radio Service, a packet switched extension in GSM wireless
networks.

Keywords
Model evaluation techniques, tools and techniques, QoS
performance modeling, transient and steady-state analysis of
generalized semi-Markov processes.

1. Introduction
To effectively design complex computer systems, software
systems, embedded systems, and communication networks, the
design process should be accompanied by quantitative evaluation
of different design alternatives. Such quantitative evaluation
considers measures like response times, queue lengths,
throughput, or loss probabilities and helps understanding system
performance. Although conceived as a general-purpose modeling

language, the current version of the Unified Modeling Language
(UML, [15]) does not contain building blocks for introducing
stochastic timing into UML diagrams. Quantitative analysis of
UML diagrams is particularly important for the emerging research
field software performance engineering (see e.g., [22], [23]) as
well as for system engineering at large.

As a first step in this direction, Douglass specified language
extensions of the UML for specifying real-time constraints such as
deadlines [6]. Furthermore, there are activities of the OMG to
extend the current version of the UML for modeling real-time
applications. Therefore, the OMG sent out a Request for Proposal
(RFP) that addresses the issue of schedulability, performance, and
time [16]. An initial response to the RFP that was recently
adopted as a final specification was submitted by a group of OMG
members consisting primarily of vendors of different kinds of
real-time tools [17]. From the modeling point of view the
specification mainly addresses the issue of modeling general
resources. A resource is viewed as a server for which the services
can be qualified by one or more quality of service (QoS)
characteristics (e.g., a response time). From the analysis point of
view, the response introduces modeling approaches that are
tailored to schedulability analysis and performance analysis. With
schedulability analysis an execution order of different entities of
the system is determined for optimizing criteria such as meet all
hard deadlines or minimize the number of missed deadlines. The
performance analysis model defines UML extensions for e.g.
modeling workloads and performance values. It is demonstrated
by a web video application that is modeled with annotated activity
diagrams. However, a detailed understanding of how to effectively
derive performance measures from UML diagrams is missing.

Recently, Cortellessa and Mirandola developed a framework for
generating a performance model from parts of UML diagrams [3],
[4]. Their proposed methodology makes use of UML use case
diagrams, sequence diagrams and deployment diagrams. They
combined a set of sequence diagrams derived from different use
cases to generate an execution graph. From the deployment
diagram they derived an extended queueing network model that is
parameterized by means of the execution graph. Nevertheless this
approach relays entirely on traditional approaches in software
performance engineering introduced by Smith in 1990 [22] and
tailored to the UML in [23]. Petriu, Shousha, and Jalnapurkar
developed a systematic approach to build a layered queueing
network performance model from a UML description [18]. They
demonstrated their approach by analyzing an existing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP ’02, July 24-26, 2002 Rome, Italy
Copyright 2002 ACM ISBN 1-58113-563-7-02/07 ...$5.00

telecommunication system. King and Pooley developed a
methodology that considers the generation of a generalized
stochastic Petri net from UML state diagrams embedded in
collaboration diagrams [10]. The translation is obtained by
associating to each state in the state diagram a place in the Petri
net and to each transition in the state diagram a transition in the
Petri net. Nevertheless, the performance analysis of UML state
diagrams via the generation of a (canonical) Petri net results in an
unnecessary overhead since the Petri net contains immediate
transitions, that should be omitted in the quantitative analysis.

In this paper we present an approach for the automatic generation
of a performance evaluation model from system specifications
described through UML state diagrams or activity diagrams. To
enable quantitative evaluation of UML system specifications, the
building blocks of the UML must be enhanced for specifying
deterministic and stochastic delays and a well-defined mapping of
UML diagrams onto their underlying discrete-event stochastic
system (i.e., the underlying stochastic process) must be
introduced. This paper addresses these issues. The contribution is
twofold: First, we propose extensions to UML state diagrams and
activity diagrams to allow the association of events with
exponentially distributed and deterministic delays. Subsequently,
we show how to map these time-enhanced UML system
specifications onto a discrete-event stochastic system. We identify
a particular stochastic process, the generalized semi-Markov
process (GSMP) [21], [24], as the appropriate vehicle on which
quantitative analysis is performed. Second, we present an efficient
algorithm for the direct and automated state space generation out
of these UML diagrams that removes vanishing states, i.e. states
with no timed events active, and considers branching probabilities
within activity diagrams. Furthermore, we introduce a
performance evaluation framework that allows a system designer
to predict performance measures at several steps in the design
process by the concept of nested states provided in state diagrams.

The approach presented in this paper is implemented in the new
version of DSPNexpress 1.5 [11], DSPNexpress 2000, that
provides tool support for the automated quantitative analysis of
discrete-event stochastic systems underlying UML diagrams and
Petri nets. DSPNexpress 2000 contains filters to the commercial
UML design packages Rational Rose™ [19] and Rhapsody™
[20]. These filters were introduced in a previous paper [14]. The
linkage of the DSPNexpress software to commercial UML design
packages effectively supports the design process because these
tools contain sophisticated user interfaces for user-friendly model
specification that are widely used in industry.

The remainder of this paper is organized as follows. In Section 2
we present the framework for quantitative analysis of UML
diagrams and describe how to integrate our methodology in the
system design lifecycle. Section 3 considers the introduction of
deterministic and stochastic delays into UML state diagrams and
activity diagrams as well as the mapping of these UML building
blocks onto stochastic processes. In Section 4, we present an
UML specification of the General Packet Radio Service, a packet
switched extension in GSM wireless networks. Finally,
concluding remarks are given.

2. Framework for Quantitative Analysis of
UML Diagrams
In order to accompany the design process of software and
hardware systems with performance evaluation in different design
stages a framework for quantitative analysis of UML diagrams is
needed. Figure 1 presents the proposed framework for deriving
performance measures for UML diagrams by analysis of their
underlying GSMP. As illustrated, the derivation of performance
measures is divided into four main steps. In the first step, a state
diagram or activity diagram has to be specified with an UML
design tool like Rational Rose™ [19] or Rhapsody™ [20]. With
these tools output files can be generated with an ascii-text
representation of the UML diagram (e.g., the .sbs file of
Rhapsody™). For timed events an extra specification file is
needed to include the expected waiting delays and information
about the delay distribution, i.e., deterministic or exponentially
distributed delay.

After adding timing specifications to the UML diagram, the
derivation of the state transition graph has to be performed; see
step (2) in Figure 1. Therefore, the state space of the UML
diagram has to be explored as described in Section 3. Note, that
the state transition graph is a formal representation of the discrete-
event system specified in the UML or even other specification
languages like generalized stochastic Petri nets (GSPN) [1] or
deterministic and stochastic Petri nets (DSPN) [11]. Its generation
is a prerequisite for the quantitative analysis of the underlying
stochastic process.

The core of the quantitative evaluation process constitutes the
numerical solution of the underlying GSMP with exponential and
deterministic events; see step (3) in Figure 1. For a detailed
mathematical treatment of stochastic processes underlying
discrete-event stochastic systems, we refer to [11]. Alternatively,
the transient or steady-state solution of the GSMP can be derived
by discrete-event simulation e.g., as provided by the commercial
simulation library CSIM [5]. The results are stored in a data
structure comprising of the state probabilities for the state
transition graph.

The main task of step (4) in Figure 1 constitutes the computation
of performance measures like throughput, loss probabilities, mean
response time of a resource etc. given the previously computed
state probabilities of the underlying GSMP. Therefore, the
probabilities have to be combined to performance measures of
interest or even to state probabilities of the state diagram. In order
to derive performance curves for a performance measure of
interest the value of one delay parameter of a UML diagram is
varied while the other parameters are kept fixed. Performance
curves give system engineers significant insight into the system
dynamics before implementing the system. The framework allows
system engineers to check system performance in early design
stages and to refine their model if necessary as shown in step (5)
in Figure 1. As described in Section 3 the system performance can
be evaluated at several steps in the development lifecycle using
the concept of nesting substates into superstates available at the
states diagrams palette. Therefore, it is possible to obtain rough
quantitative values in early design stages as well as very accurate
performance indices in a final design phase.

U M L S t a t e D i a g r a m o r
A c t i v i t y D i a g r a m

S t a t e T r a n s i t i o n G r a p h

N u m e r i c a l S o l u t i o n o f
G e n e r a l i z e d s e m i - M a r k o v P r o c e s s

M a p p i n g o f U M L
D i a g r a m o n t o G S M P

S p e c i f i c a t i o n o f
U M L D i a g r a m

S t e p 1 : S p e c i f y U M L d i a g r a m
w i t h a c o m m o n U M L d e s i g n
t o o l a n d a d d s u p p l e m e n t a r y
t i m i n g s p e c i f i c a t i o n s

S t e p 2 : E x p l o r e s t a t e s p a c e o f
G S M P u n d e r l y i n g t h e U M L
d i a g r a m w i t h t h e p r e s e n t e d
a l g o r i t h m

S t e p 3 : D e r i v e s t e a d y s t a t e o r
t r a n s i e n t s o l u t i o n o f G S M P
w i t h s t a t e - o f - t h e - a r t n u m e r i c a l
m e t h o d s

S t a t e P r o b a b i l i t i e s

C o m b i n e G S M P R e s u l t s
w i t h U M L D i a g r a m

P e r f o r m a n c e M e a s u r e s
f o r U M L D i a g r a m

S t e p 4 : D e r i v e p e r f o r m a n c e
c u r v e s a n d s t a t e p r o b a b i l i t e s
f o r U M L d i a g r a m

S t e p 5 : C h e c k r e s u l t i n g
p e r f o r m a n c e v a l u e s a n d r e f i n e
U M L d i a g r a m i f n e c e s s a r y

Figure 1. Derivation of quantitative performance measures out of UML diagrams

In order to automate the performance evaluation process we
implemented the described methodology in the tool DSPNexpress
2000. The main goal of DSPNexpress 2000 constitutes the
availability of an open interface for utilizing the highly efficient
numerical solvers for GSMPs for the quantitative evaluation of
systems specified in modeling formalisms other than just
deterministic and stochastic Petri nets (DSPNs). In fact, the main
research contribution of DSPNexpress 2000 constitute the robust
implementation of an efficient numerical method for transient and
steady-state analysis of GSMPs with exponential and
deterministic events [12].

Currently, DSPNexpress 2000 can perform quantitative analysis
for DSPNs and UML specifications, i.e., state diagrams and
activity diagrams. DSPNs can be edited directly with the Petri net
editor of DSPNexpress. UML state diagrams and activity
diagrams can be imported through an UML filter provided by
DSPNexpress 2000 as introduced in [14]. The parameter
specifications for associating exponentially distributed or
deterministic delays with events can be added to the UML
diagrams through the DSPNexpress graphical user interface.
DSPNexpress allows the user-friendly specification of
performance studies (i.e., what/if studies). Performance curves
derived by the report generator of DSPNexpress can be either
visualized by DSPNexpress or exported in a format compatible to
the common tool GNUPLOT.

3. Performance Analysis of UML Diagrams

3.1 Introducing Stochastic Timing into UML
Diagrams
The UML [2], [15] provides different views of a model that are
represented by graphical diagrams. These diagrams include use
case diagrams, class diagrams, behavior diagrams, and

implementation diagrams. Behavior diagrams include state
diagrams, activity diagrams and interaction diagrams like
sequence diagrams and collaboration diagrams. It is the freedom
of the designer to choose the types of UML diagrams best suited
for the intended representation of a system. In this paper, we
choose state diagrams and activity diagrams as UML building
blocks for enabling quantitative system analysis with the UML.
The diagrams are presented using the notation from [6].

State diagrams of the UML provide a simple but formal means of
modeling the complex event-driven system behavior. All
semantics necessary to express behavior (i.e., states, historical
properties, transitions, and compound transitional connectors) are
available on the state diagram palette. The semantics and notation
of state diagrams, also known as statecharts, are substantially
those of Harel's statecharts (see e.g., [9]) with modifications to
make them object-oriented. A state diagram represents a state
machine; a state being a condition during the life of an object or
an interaction during which it satisfies some condition, performs
some action, or waits for some event.

States are shown as named rectangles with rounded corners and
represent a possible situation for an object. The initial state of an
object is labeled with a default connector that is represented by a
short arc starting from a small filled circle. States can be ordered
hierarchically and/or concurrently. Concurrent states are separated
by dashed lines. These states are also called or-states because they
are mutually exclusive. The hierarchy of states is represented by
the nesting of states within states. The outer enclosing state is
called superstate and the inner states are called substates. The
substate that is visited by entering the corresponding superstate is
labeled with the default connector. Furthermore, pseudostates are
defined in UML state diagrams. The conditional pseudostate
allows one of a set of branching transitions to be selected based
on some guarding condition. A conditional pseudostate is
indicated by a circled C. The history pseudostate indicates that

when entering a superstate the initial or default state is that last
active substate of the superstate. The UML identifies two kinds of
history - shallow and deep. Shallow history means that the last
active substate is the active default, but if that substate is further
decomposed into sub-substates, no knowledge is retained of that
nested history. Deep history means that history is remembered to
all levels of nesting. Shallow history is indicated by a circled H
and deep history by a circled H*.

Transitions are shown as directed arcs between states. Transitions
are labeled with a trigger event, a guard, and an action. A proper
definition of a transition must contain either one of these three
building blocks. The two others are optional. Actions are
considered to be processes that occur quickly and are not
interruptible. A guard is a logical condition that will return only
"true" or "false". If the trigger event occurs and the guard resolves
to "true" the action is executed and the corresponding state change
is performed. Thus, we have the following notation for a
transition:

event[guard]/action

Activity diagrams of the UML are used to model sequence and
parallelism of activities. An activity diagram is a special case of a
state diagram in which all (or at least most) of the states are action
states (i.e., activities) and in which all (or at least most) of the
transitions are triggered by completion of the actions in the source
states. The purpose of this diagram is to focus on the flows driven
by internal processing (as opposed to external events). Activity
diagrams are used in situations where all or most of the events
represent the completion of internally generated actions (that is a
procedural flow of control). State diagrams, on the other hand, are
used in situations where asynchronous events predominate.

In order to introduce timing in a UML state diagram or activity
diagram, we associate trigger events with deterministic or
exponentially distributed delays. Thus, timed events trigger a state
transition. We call these transitions timed transitions. Immediate
events are triggered by actions of transitions. To represent timed
events in a state diagram or activity diagram, we define new
syntactical expressions that can be directly derived from the
performance value definition PAperfValue introduced in [17]. The
expression EXP_id defines an event that triggers a state
transition after an exponentially distributed delay. The identifier
id represents the mean value of the delay, that is 1/O in the case
of an exponential distribution with parameter O. The expression
DET_id defines an event that triggers a state transition after a
deterministic delay characterized by the identifier id . Actions that
generate an (immediate) event E are denoted by GEN_E.

Furthermore, we introduce randomness in the sequential flow of
activities in activity diagrams. Therefore we associate weights
w1, ..., wn with outgoing transitions t1, ..., tn of a conditional
pseudostates. If more than one guard of the outgoing transitions
resolve to "true" (i.e., more than one transition is active) the
weights of these transitions are used to compute branching
probabilities by the following formula:

j

i
i

j
j:t active

w
p(t)

w

¦
(1)

With this definition the next state is chosen from a discrete
probability distribution among the active transitions as for GSPNs
[1].

3.2 Mapping UML Diagrams onto a
Generalized Semi-Markov Process
We view a state diagram or an activity diagram of the UML as a
discrete-state, event-driven system. That is, its state evolution
depends entirely on the occurrence of asynchronous discrete
events over time. For ease of exposition we describe the
methodology for quantitative analysis of state diagrams only.
Activity diagrams can be treated as a special case of state
diagrams. The key idea of the state space exploration is to map a
configuration of the UML state diagram onto an appropriate state
of the underlying stochastic process and a transition in the state
diagram onto a state change of the underlying process. Therefore
the stochastic process can be completely represented by the state
transition graph, a directed graph with labeled arcs.

In the following we describe the derivation of the state transition
graph via the exploration of the transition system. The transition
system consists of all possible configurations of the corresponding
UML diagram. A configuration of a state diagram is a snapshot of
its execution. One can view a configuration as the information
that is needed to completely restore the "state" of the system. A
configuration consists of the active substates of all concurrent
states of the system, the history information and the setting of all
variables. Let s1, ..., sn be the states of the state diagram, h1, ..., hr

the history connectors, and v1, ..., vm the variables corresponding
to the state diagram. Formally, a configuration C is represented by
a tuple (S,H,V) comprising of a set S that contains all active states
(i.e., one substate of each concurrent state), a mapping H of each
history connector hj onto a set Hj comprising of the stored history
states, and a mapping V of each variable onto an appropriate
value. In the case of shallow history the sets Hj contain each only
one state, namely the substate that has to be restored when
entering the history connector. In the case of deep history further
substates have to be stored if even one substate is a concurrent
state.

The configurations of the transition system are connected by
directed arcs that represent a change of a configuration in the state
diagram. We distinguish two causes of a change of a configuration
in the transition system. First a change of a configuration can be
triggered by timed transitions, with events that have exponentially
distributed or deterministic delays. Furthermore, a change of a
configuration can occur without delay. That is due to the
evaluation of a guard or the occurrence of an immediate event
generated by an action. We simply call these changes of
configuration immediate transitions. As in generalized stochastic
Petri nets [1], we define that immediate transitions have priority
over timed transitions. That is if the guard of an immediate
transition ti is accepted, this transition triggers the configuration
change with (branching) probability p(ti) (see equation (1)).

Configurations in the transition system can be classified as
tangible or vanishing configurations. A tangible configuration is a
configuration in which only timed transitions are active. A
vanishing configuration is a configuration in which one or more
immediate transitions are active. For the quantitative analysis of
UML state diagrams only tangible configurations of the
underlying transition system need to be considered. This is
because immediate transitions occur without delay and therefore
the probability of being in a vanishing state is equal to zero. Thus,
only the tangible configurations constitute states of the stochastic

(1) Import state diagram from UML design tool
(2) Derive initial tangible configuration cinit

(3) Label cinit as NEW and insert cinit into the empty transition graph G
(4) FOR EACH configuration c = (S,H,V) labeled as NEW in G DO
(5) Label c as VISITED
(6) FOR EACH state s � S DO
(7) FOR EACH transition t originating from s DO
(8) IF guard of t resolves to TRUE in configuration c THEN DO
(9) Derive configuration c' reached through transition t
(10) Derive set of tangible configurations C reachable from c'
(11) FOR EACH configuration c'' in C DO
(12) Label c'' as NEW and insert c'' into G
(13) Insert arc c o c'' labeled with delay distribution into G
(14) OD
(15) OD
(16) OD
(17) OD
(18) OD

Figure 2. Algorithm for generation of state transition graph

process for which the quantitative analysis is performed. All
vanishing configurations in a transition system have to be
removed to obtain the state transition graph that comprises of only
tangible configurations and directed arcs between all tangible
configurations of the transition system.

Figure 2 depicts a pseudo-code algorithm for the generation of the
state transition graph. The initial tangible configuration can be
calculated with a top-down activation of the default states of the
state diagram beginning with the top-level state. Starting with the
initial tangible configuration the algorithm directly derives the
transition graph without explicitly generating the transition
system. The key procedure of the algorithm is performed in step
(9) and (10). The configuration c' in step (9) is derived using the
history information H stored in configuration c = (S,H,V) and the
execution of the actions of transition t that may effect the variable
setting V. Note that the configuration c' may be a vanishing
configuration that should not be inserted in the transition graph.
Therefore the set of tangible configurations that can be reached
through c' has to be determined recursively with graph analysis
methods based on a depth-first-search starting at c' (see step (10)
of Figure 2). We observe that an effective method for this task can
be borrowed from reachability analysis for generalized stochastic
Petri nets [1].

Besides the state space exploration and the effective removal of
vanishing configurations, quantitative analysis of UML
specifications requires a mapping of the state transition graph
onto an appropriate stochastic process for which simulation-based
and/or analytical numerical analysis methods are known. This
mapping is the key for the quantitative analysis of UML state
diagrams and activity diagrams. In fact, every tangible
configuration of the state diagram maps to a state of the
corresponding state space of the underlying stochastic process and
every configuration change in the state transition graph
corresponds to a state change in the stochastic process.

The most general form of the stochastic process underlying a state
diagram is the generalized semi-Markov process (GSMP). A
generalized semi-Markov process [21], [24] is a continuous-time
stochastic process that makes a state transition when one or more
“events” associated with the occupied state occur. Events
associated with a state compete to trigger the next state transition,
and each set of trigger events has its own distribution for
determining the next state. At each state transition of the GSMP,

new events may be scheduled. For each of these new events, a
clock indicating the time until the event is scheduled to occur is
set according to an independent (stochastic) mechanism. I.e., for
each new event a clock reading is generated according to its clock
setting distribution. For each scheduled event which does not
trigger a state transition but is still scheduled in the next state, its
clock continues to run. If an event is no longer scheduled in the
next state, it is canceled, and the corresponding clock reading is
discarded.

In general, a GSMP describes the evolution of the stochastic
behavior of a discrete-event stochastic system (DES). Although a
GSMP constitutes a very general stochastic process, a rich body
of theoretical results on monotonicity, regeneration, and
continuity is available [21], [24]. In general, the analysis of a
GSMP can be performed by discrete-event simulation only. For
finite-state GSMPs with exponential and deterministic events, a
cost-effective numerical method for the transient and steady-state
analysis has been introduced in the context of stochastic Petri nets
[12]. These analysis techniques are based on a general state space
Markov chain (GSSMC) embedded at equidistant time points nD
(n = 1,2,...) of the continuous-time GSMP. This numerical
approach constitutes of two main steps: the derivation of the
transition kernel and the solution of a system of multidimensional
integral equations. Therefore, the well-defined derivation of the
state transition graph of the GSMP is the key for quantitative
analysis of UML system specifications.

To provide an example, Figure 3 shows the state diagram of a
queueing system with a Markov-modulated Poisson process
(MMPP) [8] as customers arrival process, one server with
deterministic service time and finite buffer of size K, i.e., an
MMPP/D/1/K queueing system. The MMPP is parameterized by
two states representing a bursty and a less bursty mode of
customer arrivals. Such an MMPP is used as the packet arrival
process for the application example presented in Section 4.

Each configuration of the MMPP/D/1/K queue can be represented
by a tupel comprising of the active states, the history information,
and the value of the variable Queue (i.e., 0,1,...,K customers in the
queue) as explained above. The set of states S of a configuration
contains one substate of each of the concurrent superstates
Customers and Server, i.e., Normal (N), Bursty (B), or Decision
(D), of superstate Customers and ServerIdle (I) or ServerBusy (B)
of superstate Server. The history information is simply N or B
corresponding to the Normal and Bursty substate, respectively.

The transition system of the MMPP/D/1/K queue is presented in
Figure 4. Tangible configurations are drawn as white circles and
are associated with state numbers. Vanishing configurations are
drawn as dashed circles. Directed arcs between configurations
represent feasible state transitions. Dashed arcs represent
immediate state transitions. Below a state number the
corresponding configuration is written in the following notation:

(customers substate, server substate; history state; queue length)

Note, that the transition system is not derived explicitly in the
algorithm presented in Figure 2. Instead the transition graph is
derived directly by ignoring the vanishing configurations when
exploring the state space (step (10) of Figure 2). The state
transition graph of the GSMP corresponding to the MMPP/D/1/K
queue is shown in Figure 5. Putting it all together, the state
transition graph of the GSMP consists of 2·(K+1) tangible

D e c i s i o n

M M P P

b u r s t y

n o r m a l

E X P _ l e s s
B u r s t y [Q u e u e < K] / Q u e u e + +

E X P _ m o r e
B u r s t y

E X P _ n o r m a l A r r i v a l

[Q u e u e = = K]

E X P _ b u r s t y A r r i v a l

M M P P / D / 1 / K

H
D E T _ s e r v i c e /
Q u e u e - -

S e r v e r

S e r v e r I d l e

C u s t o m e r s

S e r v e r B u s y

[Q u e u e > 0]

Figure 3. UML state diagram of an MMPP/D/1/K queue

s 0 0
E X P _ a r r i v a l E X P _ a r r i v a l

D E T _ s e r v i c e D E T _ s e r v i c e

(D , I ; N ; 0) (N , I ; ; 1)(N , I ; ; 0)

E X P _ a r r i v a l E X P _ a r r i v a l

D E T _ s e r v i c e D E T _ s e r v i c e

(B , I ; ; 0)

s 1 0 s 2 0 s K 0

s 0 1 s 1 1 s 2 1 s K 1

(N , B ; ; 1)

(B , B ; ; 1)(D , I ; B ; 0) (B , I ; ; 1)

(D , B ; N ; 1)

(D , B ; B ; 1)

(N , B ; ; 2)

(B , B ; ; 2)

(N , B ; ; K)

(B , B ; ; K)

E
X
P
_ l
e s
s B

u
r s
t y

E
X
P
_ m

o r
e B

u
r s
t y

E
X
P
_ l
e s
s B

u
r s
t y

E
X
P
_ m

o r
e B

u
r s
t y

E
X
P
_ l
e s
s B

u
r s
t y

E
X
P
_ m

o r
e B

u
r s
t y

E
X
P
_ l
e s
s B

u
r s
t y

E
X
P
_ m

o r
e B

u
r s
t y

Figure 4. Transition system of the UML state diagram of an MMPP/D/1/K queue

E X P _ a r r i v a l E X P _ a r r i v a l

D E T _ s e r v i c e D E T _ s e r v i c e

s 0 0 s 1 0 s 2 0 s K 0

E
X
P
_ l
e s
s B

u
r s
t y

E
X
P
_ m

o r
e B

u
r s
t y

E X P _ a r r i v a l
s 0 1

E
X
P
_ l
e s
s B

u
r s
t y

E
X
P
_ m

o r
e B

u
r s
t y

E
X
P
_ l
e s
s B

u
r s
t y

E
X
P
_ m

o r
e B

u
r s
t y

E
X
P
_ l
e s
s B

u
r s
t y

E
X
P
_ m

o r
e B

u
r s
t y

E X P _ a r r i v a l
s 1 1 s 2 1 s K 1

D E T _ s e r v i c e D E T _ s e r v i c e

Figure 5. State transition graph of the GSMP underlying the UML state diagram of an MMPP/D/1/K queue

configurations representing 0,1,2,...,K customers in the queue
with the MMPP residing in normal or bursty mode. That is,
configurations si0 correspond to i customers in the queue with the
MMPP in normal mode and configurations si1 correspond to i
customers in the queue with the MMPP in bursty mode.

We want to point out that the framework for generating a
performance model, i.e., the state transition graph, and
subsequently deriving performance curves out of a UML state
diagram or activity diagram can be applied in several steps in the
system or software development lifecycle. In order to get insight
in the quantitative system dynamics in early design stages we
suggest a hierarchical modeling of the system with state diagrams.
That is, in a first step the system designer has to identify the
"main" states of the system. That can be done for example by
using a set of sequence diagrams derived from different use cases.
Furthermore, a rough design of the system reduces the state space
size significantly and therefore performance values can be
obtained very quickly. In later design stages the main states
should be modeled in more detail using the concept of nesting
substates into superstates. Thus, it is possible to obtain rough
performance values in early design stages as well as very accurate
performance indices in a detailed design phase.

4. Application Example

4.1 Modeling the General Packet Radio
Service with UML State Diagrams
To illustrate the practical applicability of our approach for the
quantitative analysis of UML specifications, we consider an UML
state diagram of the General Packet Radio Service (GPRS) for
GSM wireless networks. A detailed performance study for GPRS
is published in [13].

The General Packet Radio Service is a standard from the
European Telecommunications Standards Institute (ETSI) on
packet data in the Global System for Mobile Communications
(GSM) [7]. By adding GPRS functionality to the existing circuit
switched GSM network, operators can give their subscribers
resource-efficient wireless access to external Internet protocol-
based networks, such as the Internet and corporate intranets. The
basic idea of GPRS is to provide a packet switched bearer service
in a GSM network. In conventional GSM, a physical channel is
permanently allocated for a particular user during the entire call
period (whether data is transmitted or not). In contrast, in GPRS
the channels are allocated on a per-packet basis, i.e., only when
data packets are sent or received, and they are released after the
transmission. For bursty traffic this results in a much more
efficient usage of the scarce radio resource because this principle
allows multiple users to share one physical channel.

The GPRS model considers an integrated GSM/GPRS network,
serving circuit-switched voice and packet-switched data calls.
Therefore, the available physical radio channels have to be split
into GSM traffic channels and channels allocated to GPRS, called
Packet Data Channels (PDCH). GPRS includes the functionality
to increase or decrease the amount of radio resources allocated to
GPRS on a dynamic basis (“capacity on demand”). Physical
channels not currently in use by conventional GSM can be
allocated as PDCHs and when there is a resource demand for

services with higher priority, e.g. GSM voice calls, PDCHs can be
de-allocated.

In Figures 6 to 8 the state diagrams considering mobile user
behavior in a single cell of an integrated GSM/GPRS network are
presented. The overall number of physical channels available in
the cell is represented by the identifier freeChannels. We assume
that a certain number of channels, denoted by fixedPDCH, are
permanently reserved as PDCHs for GPRS and the remaining
channels can be used either as GSM traffic channels or as “on-
demand” PDCHs. In particular, the model considers the following
six driving processes that may effect the state of the cell:

(1) incoming GSM calls and handovers,

(2) incoming GPRS calls and handovers,

(3) leaving GSM calls due to completion or handover,

(4) leaving GPRS calls due to completion of handover,

(5) arrivals of IP packets,

(6) transmission of IP packets.

A GSM or GPRS call can be either terminated by a handover to
an adjacent cell (expressed in the model by call dwell time) or by
completing the call in the considered cell (expressed by call
duration). Figure 6 shows the GSM and GPRS call arrival
processes and Figure 7 depicts the corresponding call service
processes. We assume GSM and GPRS call arrivals as well as
GSM and GPRS call service times to be exponentially distributed.
If a new GSM or GPRS call is accepted in the cell an attach
procedure that identifies the new user in the cell introduces a
deterministic overhead. Similar, a handover call from an adjacent
cell introduces a significant overhead. This overhead is modeled
by the deterministic delays GSMattach and GPRSattach,
respectively (see Figure 6). Note that these two deterministic
events can be concurrently active. Therefore, the underlying
stochastic process truly constitutes a generalized semi-Markov
process with exponential and deterministic events and cannot be
represented by a simpler process.

The employed traffic model constitutes a Markov-modulated
Poisson Process (MMPP) [8] that generates IP traffic for each
individual GPRS user in the cell. Opposed to an ordinary Poisson
process, the MMPP can capture some of the important
correlations between the interarrival times (e.g., burstiness). The
UML state diagram representation of the MMPP is similar to that
of the MMPP/D/1/K example presented in Section 3.

The state diagram modeling the transmission of IP packets over
the wireless link is shown in Figure 8. IP packets that arrive at the
base station are queued in a waiting line of limited size. For
transmission the available PDCHs are fairly shared by all packets
in transfer up to a maximum of eight PDCHs per IP packet
(“multislot mode”) and a maximum of eight packets per PDCH
[7]. Note that in the state diagram of Figure 8 packets are
transferred one by one. In order to emulate the parallel transfer of
packets the transfer time of a packet on one physical channel is
divided by the number of channels used in parallel for packet
transfer. This means that the transfer time packetService depends
on the number of packets currently queued, i.e., the identifier
packetQueue. The algorithm for generation of the state transition
graph allows such a dynamic definition of identifiers and event
delays in the parameter specification file.

G P R S c a l l A r r i v a l

G P R S a c c e p t O r R e j e c tn o N e w G P R S c a l l s
E X P _ G P R S c a l l O r H a n d o v e r

[c u r r e n t G P R S c a l l s = = m a x G P R S c a l l s]

[c u r r e n t G P R S c a l l s < m a x G P R S c a l l s]
/ c u r r e n t G P R S c a l l s + +

C a l l A r r i v a l

G S M a c c e p t O r R e j e c tn o N e w G S M c a l l s
E X P _ G S M c a l l O r H a n d o v e r

[f r e e C h a n n e l s - f i x e d P D C H = = 0]

[f r e e C h a n n e l s - f i x e d P D C H > 0]
/ f r e e C h a n n e l s - - ; c u r r e n t G S M c a l l s + +

G S M c a l l A r r i v a l

D E T _ G S M a t t a c h

G S M a c c e p t

D E T _ G P R S a t t a c h

G P R S a c c e p t

Figure 6. State diagram of GSM and GPRS call arrival process

C a l l S e r v i c e

G S M c a l l F i n i s h e d

n o G S M c a l l s G S M c a l l s R u n n i n g

/ c u r r e n t G S M c a l l s - - ;
f r e e C h a n n e l s + +

[c u r r e n t G S M c a l l s > 0]

[e l s e]

[c u r r e n t G S M c a l l s = = 0]

E X P _ G S M c a l l T i m e

E X P _ G S M d w e l l T i m e

C

G P R S c a l l S e r v i c e

G P R S c a l l F i n i s h e d

n o G P R S c a l l s G P R S c a l l s R u n n i n g

/ c u r r e n t G P R S c a l l s - -

[c u r r e n t G P R S c a l l s > 0]

[e l s e]

[c u r r e n t G P R S c a l l s = = 0]

E X P _ G P R S c a l l T i m e

E X P _ G P R S d w e l l T i m e

C

G S M c a l l S e r v i c e

Figure 7. State diagram of GSM and GPRS call service process

P a c k e t T r a n s m i s s i o n

u s e M a x i m u m P D C H sp a c k e t s B u f f e r e d

p a c k e t T r a n s m i t t e d

u s e F r e e C h a n n e l s

p a c k e t Q u e u e I d l e
[p a c k e t Q u e u e > 0]

E X P _ m a x P a c k e t S e r v i c e
/ p a c k e t Q u e u e - -

[p a c k e t Q u e u e = = 0]

[p a c k e t Q u e u e > 0]

E X P _ p a c k e t S e r v i c e
/ p a c k e t Q u e u e - -

[e l s e]

[f r e e C h a n n e l s < =
p a c k e t Q u e u e * 8]

C

Figure 8. State diagram of GPRS packet transmission process

4.2 Performance Results
We present two curves for quality of service measures computed
with DSPNexpress 2000. The curves are computed with the
experiment option of DSPNexpress. For the experiments we vary
the call arrival rate of GSM/GPRS users from 0 to 1.2 calls per
second. Furthermore, we assume a split of 2%, 5%, 10% GPRS
calls and 98%, 95%, and 90% GSM calls, respectively. The
curves are computed with one PDCH permanently reserved for
GPRS. A complete specification of the model parameters is given
in [13]. Performance measures that are most interesting for system
engineers are carried data traffic, i.e., the amount of channels that
are in use for GPRS on average, and packet loss probability, i.e.,
the probability of a packet loss due to buffer overflow at the base
station. These two measures immediately reflect the performance
gained by the end-user.

Figures 9 and 10 plot carried data traffic and packet loss
probability derived from the quantitative analysis of the GPRS
model by DSPNexpress 2000. In the curve for carried data traffic
we observe a significant decrease in allocated PDCHs when traffic
load is high which is due to the priority of GSM voice calls over
GPRS packet data transmissions. Such performance curves can
provide system engineers with necessary insight into the system
behavior under different traffic load conditions. From the curves
we conclude for example that for an anticipated amount of 10%
GPRS calls only 0.1 calls per second can be served if a packet
loss probability of less than 10-3 is required.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2
GSM/GPRS Call Arrival Rate

C
ar

rie
d

D
at

a
T

ra
ffi

c

2% GPRS Users
5% GPRS Users
10% GPRS Users

Figure 9. GPRS Performance Model: Carried data traffic and
vs. offered traffic load

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
GSM/GPRS Call Arrival Rate

P
ac

ke
t L

os
s

P
ro

ba
bi

lit
y

2% GPRS Users
5% GPRS Users
10% GPRS Users

Figure 10. GPRS Performance Model: Packet loss probability
vs. offered traffic load

5. Conclusions
In this paper, we propose extensions to UML state diagrams and
activity diagrams to allow the association of events with
exponentially distributed and deterministic delays. We identify a
particular stochastic process, the generalized semi-Markov
process (GSMP), as the appropriate vehicle on which quantitative
analysis is performed. Furthermore, we introduce a framework for
the automate quantitative analysis of UML diagrams enhanced
with deterministic and stochastic delays. A main contribution of
the paper is the efficient algorithm for the automated derivation of
the state space underlying a UML state diagram or activity
diagram that additionally deals with history connectors and
branching probabilities. To illustrate the applicability of our
approach for the quantitative analysis of UML system
specifications, we presented a performance study for the General
Packet Radio Service based on a UML state diagram.

6. References
[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G.

Francheschinis, Modelling with Generalized Stochastic Petri
Nets, John Wiley & Sons, 1995.

[2] G. Booch, I. Jacobson, and J. Rumbaugh, The Unified
Modeling Language User Guide, Addison Wesley 1999.

[3] V. Cortellessa and R. Mirandola, Deriving a Queueing
Network Based Performance Model from UML Diagrams,
Proc. 2nd Int. Workshop on Software and Performance
(WOSP), Ottawa, Canada, 58-69, 2000.

[4] V. Cortellessa and R. Mirandola, UML Based Performance
Modeling of Distributed Systems, in: A. Evans, S. Kent, B.
Selic, (Eds.), 3rd Int. Conf. on the Unified Modeling
Language, York, UK, LNCS 1939, 178-193, Springer, 2000.

[5] CSIM18-The Simulation Engine,
http://www.mesquite.com .

[6] B.P. Douglass, Real-time UML: Developing Efficient Objects
for Embedded Systems, 2nd Edition, Addison Wesley 1999.

[7] ETSI, Digital cellular telecommunications system (Phase
2+); General Packet Radio Service (GPRS); Service
description; Stage 2, GSM recommendation 03.60, 1999.

[8] W. Fischer and K. Meier-Hellstern, The Markov-modulated
Poisson Process (MMPP) cookbook, Performance
Evaluation, 18, 149-171, 1993.

[9] D. Harel, Statecharts: A Visual Formalism for Complex
Systems, Science of Computer Programming 8, 231-274,
1987.

[10] P. King and R. Pooley, Derivation of Petri Net Performance
Models from UML Specifications of Communications
Software, in: B.R. Haverkort, H.C. Bohnenkamp, C.U. Smith
(Eds.), 11th Int. Conf. on Tools and Techniques for Computer
Performance Evaluation, Schaumburg, Illinois, LNCS 1786,
262-276, Springer, 2000.

[11] C. Lindemann, Performance Modelling with Deterministic
and Stochastic Petri Nets, John Wiley & Sons, 1998.

[12] C. Lindemann and A. Thümmler, Transient Analysis of
Deterministic and Stochastic Petri Nets with Concurrent

Deterministic Transitions, Performance Evaluation, Special
Issue Proc. Performance 1999, 36&37, 35-54, 1999.

[13] C. Lindemann and A. Thümmler, Performance Analysis of
the General Packet Radio Service, Proc. 21st Int. Conf. on
Distributed Computing Systems (ICDCS), Phoenix, Arizona,
673-680, 2001.

[14] C. Lindemann, A. Thümmler, A. Klemm, M. Lohmann, and
O. Waldhorst, Quantitative System Evaluation with
DSPNexpress 2000, Proc. 2nd Int. Workshop on Software
and Performance (WOSP), Ottawa, Canada, 12-17, 2000.

[15] Object Management Group, OMG Unified Modeling
Language Specification, OMG Document formal/2001-09-
67, September 2001, http://www.omg.org .

[16] Object Management Group, RFP: UML Profile for
Scheduling, Performance, and Time, OMG Document ad/99-
03-13, March 1999, http://www.omg.org .

[17] Object Management Group, Response to the OMG RFP for
Schedulability, Performance, and Time, OMG Document
ad/2001-06-14, June 2001, http://www.omg.org .

[18] D. Petriu, C. Shousha, and A. Jalnapurkar, Architecture-
Based Performance Analysis Applied to a

Telecommunication System, IEEE Trans. on Software
Engineering 26, 1049-1065, 2000.

[19] Rational Rose,
http://www.rational.com/products/rose/ .

[20] Rhapsody, http://www.ilogix.com .

[21] G.S. Shedler, Regenerative Stochastic Simulation, Academic
Press 1993.

[22] C.U. Smith, Performance Engineering of Software Systems,
Addison Wesley, 1990.

[23] C.U. Smith and L.G. Williams, Performance Evaluation of
Software Architectures, Proc. 1st Int. Workshop on Software
and Performance (WOSP), Santa Fe, New Mexico, 164-177,
1998.

[24] W. Whitt, Continuity of Generalized Semi-Markov
Processes, Mathematics of Operations Research, 5, 494-501,
1980.

