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Abstract 

In this paper, we identify the batch Markovian arrival process (BMAP) as 

analytically tractable model of choice for aggregated traffic modeling of IP 

networks. The key idea of this aggregated traffic model lies in customizing the 

batch Markovian arrival process such that the different lengths of IP packets are 

represented by rewards (i.e., batch sizes of arrivals) of the BMAP. The utilization 

of the BMAP is encouraged by the observation that IP packet lengths follow to a 

large extend a discrete distribution. A comparative study with the MMPP and the 

Poisson process illustrates the effectiveness of the customized BMAP for IP 

traffic modeling by visual inspection of sample paths over four different time-

scales, by presenting important statistical properties, and by analysis of traffic 

burstiness using R/S statistics. Additionally, we show that the BMAP model 

outperforms MMPP and Poisson traffic models by comparison of queuing 

performance. 
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1 Introduction 

Traffic characterization and modeling constitute important steps towards understanding and 

solving performance-related problems in future IP networks. In order to perform reliable 

traffic characterization and traffic modeling accurate and detailed IP network measurements 

have to be conducted. Various detailed measurements have been performed in local area 

networks (LAN), e.g. [6], [11], as well as in wide area networks (WAN), e.g. [7], [10]. The 

central idea of traffic modeling lies in constructing models that capture important statistical 

properties of the underlying measured trace data [2]. For IP traffic, important statistical 

properties are burstiness and self-similarity. Intuitively, this means that measured IP traffic 

shows noticeable sustained periods with arrivals above the mean (i.e., bursts) over a wide 

range of different time-scales [15]. Aggregated traffic models capture the entire traffic stream 

without explicitly considering individual traffic sources, e.g. the traffic originated by 

individual users. The problem of accurately capturing these properties in aggregated traffic 

models has been solved for non-analytically tractable models but is still subject of current 

research interest for analytically tractable models. Non-analytically tractable models, e.g. 

fractional Gaussian noise (fGN) and fractional autoregressive integrated moving average 

(fARIMA), naturally capture burstiness as well as self-similarity. Various research papers 

have subjected these models, e.g., Ledesma and Liu reported the effective construction of 

fGN in [8]. 

For analytically tractable models, e.g. the Markov-modulated Poisson process (MMPP, 

[4]), recent work has been proposed that utilizes the MMPP in order to mimic self-similar 

behavior [1], [16]. Skelly, Schwartz, and Dixit [13] utilized the MMPP for video traffic 

modeling. They described a simple and efficient method for parameter estimation of a general 

MMPP based on the match of the marginal distribution of the real arrival rate. The class of 

batch Markovian arrival process (BMAP, [9]) includes the well known Poisson-process, 

MMPP, and Markovian arrival process (MAP, [9]) as special cases and additionally associates 

rewards (i.e., batch sizes of arrivals) to arrival-times. However, due to the additional rewards 

the BMAP provides a more comprehensive model for representing IP traffic than the MMPP 

or the MAP, while still being analytically tractable. 

The challenge for employing BMAPs to model IP traffic constitutes the proper parameter 

estimation for this arrival process from the given trace data. In fact, measured trace data does 

not contain all statistical properties required for the unique specification of a corresponding 

BMAP. Due to this incomplete data, the parameters for a BMAP cannot be properly estimated 

by standard statistical techniques, e.g. moment matching. Dempster, Laird, and Rubin 

introduced the expectation-maximization (EM) algorithm [3] for computing maximum 

likelihood estimates from incomplete data. Ryden tailored the EM algorithm for the MMPP 

and developed an implementation [12]. To the best of our knowledge, tailoring the EM 
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algorithm for BMAPs, developing a numerical stable implementation and utilizing the BMAP 

for traffic modeling is an open research problem. 

In this paper, we present a detailed analysis of IP traffic measurements recently conducted 

at an Internet service provider (ISP) dial-up link. We derive parameterized general 

distributions for session-level, connection-level, and packet-level characteristics according to 

different application-types. Because of the nature of generally distributed sources, this 

detailed synthetic traffic model constitutes a non-analytically tractable traffic model. 

According to [14], our analysis confirms that 80% of the mass of the packet-length 

distribution is concentrated on the three packet length 40 bytes, 576 bytes, and 1500 bytes. 

Based on these observations, we introduce an aggregated traffic model for IP networks that is 

both analytically tractable and closely captures the statistics of the measured traffic data. The 

key idea of this aggregated traffic model lies in customizing the batch Markovian arrival 

process such that these different lengths of IP packets are represented by rewards of the 

BMAP. We introduce an efficient method for estimating the parameters of a BMAP with the 

EM algorithm. Furthermore, we present computational formulas for the E-step of the EM 

algorithm and show how to utilize the EM algorithm for the effective parameter estimation of 

BMAPs. In order to show the advantage of the BMAP modeling approach over other widely 

used analytically tractable models, we compare the customized BMAP with the MMPP and 

the Poisson process by means of visual inspection of sample paths over four different time-

scales, by presenting important statistical properties, by formal analysis of traffic burstiness 

using R/S statistics, and by queuing system analysis. 

The paper is organized as follows. Section 2 presents the analysis and characterization of 

the measured IP traffic. To make the paper self-contained, Section 3 recalls the definition and 

properties of the BMAP and provides a primer to the EM algorithm. Moreover, we introduce 

effective computational formulas for the expectation step (E-step) and the maximization step 

(M-step) tailored to the BMAP, and present a framework for traffic modeling of aggregated 

IP traffic that utilizes the BMAP. In Section 4, a comparative study illustrates the 

effectiveness and accuracy of the proposed traffic model. Finally, concluding remarks are 

given. 

 

2 IP Traffic Measurement and Characterization 

2.1 Dial-up Modem/ISDN Traffic Measurements 

We conducted detailed traffic measurements at the ISP dial-up modem/ISDN link of the 

University of Dortmund. At the time of performing these measurements in January 2001 the 

university offered free Internet access for students and employees, so the users’ costs depend 

on the telecommunication-tariffs and session duration only. Therefore, measurements in an 
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ISP environment can be regarded as characteristic for session-oriented Internet traffic. In the 

four-week measurement period approximately 110,000 user sessions with a total data volume 

of 120 GB have been logged. 

The measurements were performed by the software package TCPdump running on a Linux 

host that sniffs all IP packets in the Ethernet segment between the MaxTNT dial-up routers 

and the Internet router (see Figure 1). For all IP datagrams sourced or targeted by dial-up 

modems the TCP/IP header information in conjunction with a timestamp of the arrival-time 

have been recorded and stored for offline processing. The header information includes source 

and target IP addresses, the port numbers, the packet length, and the TCP header flags. In 

addition to the header trace we use the log-files generated by the MaxTNT dial-up routers. 

For each dial-up session they provide information about session start- and end-time, the 

assigned IP address, and the link bandwidth. By aligning the measured trace data with the 

MaxTNT log-files, the header trace can be split into separate trace files for each dial-up 

session. Furthermore, the session interarrival-time and session volume distributions are 

determined. 

In order to derive the connection interarrival-time and connection volume distributions, for 

each application-type all TCP connections within each session are reconstructed by means of 

IP address and port number pairs. We observed that many HTTP connections persist a 

relatively long period related to the transmitted data volume. Further investigations of this 

phenomenon showed, that many HTTP connections are closed with a reset packet, which is 

transmitted a very large time after the other packets of this connection. This is caused by the 

HTTP implementations of most Internet browsers, which keep connections open in order to 

transmit several documents within the same connection and thus avoid overhead for 

connection establishment. The reset packets abortive release the connections when the user 

terminates the HTTP application. For our traffic analysis we ignore these “late reset” packets 

for the following reasons: (1) they do not contribute to the transmission of documents and (2) 

they affect the packet interarrival-time distribution in a way that the measured data cannot be 

well represented by fittings to general distributions. 
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Figure 1. Measurement environment at the dial-up modem/ISDN links 
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2.2 Traffic Analysis and Traffic Characterization 

This section presents fundamental characteristics of the IP traffic measured at our university. 

First, we analyzed the trace data in order to obtain the application usage pattern of the 

modem/ISDN users. The data volume fractions are broken down to HTTP, FTP, e-mail, 

Napster, UDP, and other TCP applications. As Figure 2 shows, HTTP applications, e.g. Web 

browsing, dominate with a fraction of 73%, followed by the popular music download 

application Napster with 9% and e-mail with 6% of the overall transmitted data volume. Note, 

that the court decision against Napster was not effective when conducting the measurements. 

The relatively small fraction of 2% for FTP applications and the observation, that there is a 

significant number of HTTP connections comprising of very large data volume, show that file 

downloads are increasingly performed via HTTP. With 4% of the total data volume UDP 

applications form a relatively small part of the overall application usage. Taking into account 

that DNS lookups are performed via UDP the fraction of real-time UDP applications is so 

small, that realistic statistical measures about real-time traffic cannot be derived from this 

data. Therefore, we focus our investigations on non real-time traffic. 

The analysis is performed at three different traffic-levels: session-level, connection-level, 

and packet-level. 

(1) The session-level describes the dial-up behavior of the individual users, characterized 

by the session interarrival-time distribution and the session data-volume distribution. 

(2) The connection-level describes for each individual application the corresponding 

distribution of connection interarrival-times within a user-session as well as the 

distribution of connection data volume. 

(3) The packet-level characterizes the packet interarrival-time distribution and the packet 

length distribution within the application specific connections. 
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Figure 2. Application usage distribution with respect to data volume 
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According to the users’ different application-types parameterized distributions have been 

derived for the statistical measures at each traffic-level. We observe that each statistical 

measure comprises of a characteristic distribution, e.g. the HTTP connection interarrival-

times are distributed according to a lognormal distribution. In order to find such a 

characteristic distribution for a specific statistical measure we use a least-squares regression, 

utilizing the following set of probability density functions (pdf): Lognormal, Pareto, Weibull, 

Gamma, and Exponential. The detailed statistics of this analysis are omitted because of space 

limitations. 

The analysis of the packet length distributions revealed that the packet lengths of all 

relevant TCP applications follow to a large extend a discrete distribution. In Figure 3 the 

probability density of packet lengths is depicted and shows, that the packet lengths 40 bytes, 

576 bytes and 1500 bytes dominate with an overall percentage of 80% of all TCP packets. 

This observation can be explained with the maximum transfer units (MTU) of the used 

network protocols. Most application protocols like FTP, HTTP, POP3, and SMTP are used to 

transfer relatively large data blocks (opposed to many small packets in real-time applications). 

Therefore, in order to reduce overhead, as many packets as possible are filled up to the MTU 

of the underlying protocol, which typically comprises of 1500 bytes in the Ethernet protocol 

and 576 bytes in the serial line Internet protocol (SLIP). The choice between a MTU of 576 

bytes or 1500 bytes depends on the network configuration of the dial-up client. The huge 

amount of 40 bytes packets is to a large extend caused by TCP acknowledgments with an 

empty data field. Recall, that the TCP and IP headers without any options consist of 40 bytes. 

Furthermore, we observe that the remaining packet lengths are distributed uniformly between 

40 bytes and 1500 bytes. Table 1 presents the fractions of these discrete packet lengths for 
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Figure 3. Packet length distribution of TCP packets in dial-up ISP networks 
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packet length 40 byte packet length 576 byte packet length 1500 byte other packet lengths
HTTP 46.77 % 27.96 % 8.10% 17.17 %
e-mail 38.25 % 25.98 % 9.51 % 26.26 %

Napster 34.98 % 45.54 % 4.18 % 15.30 %
FTP 40.43 % 18.08% 9.33 % 32.16 %  

Table 1. Fractions of different packet lengths in overall traffic 

 

HTTP, e-mail, Napster, and FTP. In contrast to TCP packets, UDP packet lengths follow 

lognormal distribution. Note, that similar characteristics concerning discrete packet size 

distributions have been observed for local area networks (LAN) and wide area networks 

(WAN), [14]. Thus, the basic ideas outlined in the next section can also be applied for traffic 

modeling in LAN and WAN. 

The statistical properties on the three different traffic-levels can be employed for synthetic 

traffic generation that an individual user generates: A single user can run different 

applications that may be concurrently active, e.g. WWW browsing while downloading 

Napster music files. Each application is completely described by its statistical properties. 

These statistical properties comprise of an alternating process of ON- and OFF-periods with 

some application specific length or data volume distribution, respectively. During an ON-

period, i.e. an application specific connection, the user applies the appropriate application in 

an active fashion. The interarrival-time between two successive connection starting points of 

the same application-type and the data volume of each connection are drawn from the 

parameterized general distributions. Within each ON-period the packet arrival process is 

completely captured by the packet interarrival-times, drawn according to an application 

dependent distribution, and the corresponding packet lengths. The overall traffic stream of 

one user constitutes of the superposition of the packet arrival processes of all application 

connections within the user’s session. Moreover, new users enter the considered system 

environment according to a session interarrival-time distribution and leave the system after 

transferring a specific data-volume drawn according to a session volume distribution. 

Because of the nature of generally distributed sources, this detailed synthetic traffic model 

constitutes a non-analytically tractable traffic model. Thus, this traffic model can be utilized 

as traffic generation component in simulation studies on a per-user basis. Based on this 

model, performance studies for changing traffic characteristics can easily be conducted by 

new parameterization of the characteristic distribution for the considered statistical measure. 

This is easily accomplished by changing the values of expectation and standard deviation of 

the characteristic distribution of the considered statistical measure. For example, experiments 

for increasing file sizes can be easily performed by changing the parameters of the connection 

data volume distribution. In order to get an analytically tractable traffic model that can be 

integrated as a traffic generation component within analytical models, we identified the batch 

Markovian arrival process. The utilization of the BMAP is encouraged by the observation that 
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IP packet lengths follow to a large extend a discrete distribution. The key idea of this 

aggregated traffic model lies in customizing the batch Markovian arrival process such that the 

different lengths of IP packets are represented by rewards of the BMAP. Recall, that 

aggregated traffic models capture the entire traffic stream without explicitly considering 

individual traffic sources. Thus, the aggregated traffic stream comprises of a sequence of 

interarrival-times of packet arrivals and packet lengths. 

 

3 Traffic Modeling using the Batch Markovian Arrival Process 

3.1 The Batch Markovian Arrival Process 

The batch Markovian arrival process (BMAP) belongs to the class of Markov renewal 

processes. Consider a continuous-time Markov chain (CTMC, [9]) with N �1� � states 

0 1, , ,� N� �, where the states 1 2, , ,� N� � are transient states and 0 is the absorbing state. 

Moreover, �  denotes the initial state probability vector of the CTMC. Based on this 

governing CTMC, the BMAP can be constructed as follows: The CTMC evolves until an 

absorption in state 0 occurs. The chain is then instantaneously restarted in one of the transient 

states 1 2, , ,� N� �. When restarting the BMAP after absorption in a transient state j, the 

probability for selecting state j is allowed to depend on state i from whom absorption has 

occurred. Thus, the distribution of the next arrival may depend on the previous history. 

Furthermore, there may exist multiple paths between states i and j corresponding to different 

rewards, i.e., batch sizes of arrivals. Due to the additional rewards the BMAP provides a more 

comprehensive model for representing IP traffic than the MMPP and the MAP, while still 

being analytically tractable. 

Formally, assume the BMAP is in a transient state i for an exponentially distributed time 

with rate � i . When the sojourn time has elapsed, there are M �1� �  possible cases for state 

transitions: With probability P m i j� � ,  the BMAP enters the absorbing state 0 and an arrival of 

batch size m occurs. Then, the process is instantaneously restarted in state j. Note that the 

selection of state j (1 � j � N) and batch size m (1 � m � M) is uniquely determined by P m i j� � , . 

On the other hand, with probability P 0� �i j,  the BMAP enters another transient state j, j i� , 

without arrivals. We can define D P0 0� � � �i j i i j, ,� ��  for i j� , D 0� �i i i, � �� , and 

D Pm mi j i i j� � � �, ,� �� . Here, D 0� �  defines the rate matrix of transitions without arrivals, 

whereas the matrices D m� � define rate matrices of transitions with arrivals of batch size m  

(1 � m � M). Summing up D 0� �  and D m� � (1 � m � M) leads to D D D� �
 

�0
1

� � � �m
m

M
, where 

D is the infinitesimal generator matrix of the CTMC underlying the BMAP. Furthermore, the 

matrix fm t� �  of probability density functions (pdf) defines probability laws for state changes 

in the CTMC from i to j with an arrival of batch size m at time t. The matrices fm t� �  are given 

by f DD
m

tt m� � � �� �� �e 0 . 
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3.2 Parameter Estimation Procedure 

We derived a computational efficient and numerical robust EM (expectation-maximization) 

algorithm for the parameter estimation process of BMAPs, i.e., estimation of the parameter 

set � comprising of the probability vector � and the transition rate matrices D D0� � � �, ,� M . 

The EM (expectation-maximization) algorithm [3] implements maximum likelihood 

estimation in case of incomplete data. Such incomplete data can be thought of as partial 

observations of a larger experiment. In fact, for a BMAP only arrival-times and batch sizes of 

arrivals, e.g. arrival-times of IP packets and their packet lengths, are observable. All state 

changes in the governing CTMC not hitting the absorbing state are not observable and, thus, 

cannot be derived from measured trace data. 

Formally, suppose that y is the observable part of a considered experiment. This 

experiment can be described completely by y and the non-observable data x denoted as the 

missing data. Let � �, y� �  be the likelihood of a parameter set � given the observation y and 

let �c �, ,x y� �  be the so-called complete likelihood of the parameter set � including the 

missing data x. Assume y � t b t b t bn n1 1 2 2, , , , , ,� � � � � �� ��  is the observed sequence of interarrival-

times tk  and the corresponding batch sizes bk . Define 	t t tk k k� �
�1  for 1 � k � n Then, the 

likelihood of a BMAP with parameter set � is given by: 

� � �,y f 1� � � �� � �
 


 b k
k

n

k
t	

1

 (1) 

Recall, that in Eq. (1), � denotes the initial state probability vector of the CTMC, fbk
t� �  

defines the matrix of probability density functions, and � is a specific parameter set for the 

BMAP comprising of � and the transition rate matrices D D0� � � �, ,� M . The vector 1 

represents a vector of appropriate dimension comprising of 1s in each entry. Note, that the 

(logarithm of the) likelihood measures the quality of the estimated parameter set. 

The EM algorithm iteratively determines estimates of the missing parameter set � of the 

BMAP. Denote by � r� �  the parameter set calculated in the r-th iteration of the EM algorithm. 

We denote further by �II  and �II  the conditional probability and the conditional expectation 

given the estimate �, respectively. As shown in [3], the estimate 

� arg max log , ,� �II II
� � r

c
� � � �	 
� �� x y y , for r � 0 1, ,2,�, (2) 

satisfies � �� , ,� �y y
 � � �� �� r  and � �r � �1� � �  is the estimate for the parameter set determined 

in the r �1� � -th step of the algorithm. This iterative procedure is repeated until a predefined 

maximum number of iterations is reached or until convergence criteria holds. That is, each 

component of � r� �  and � r �1� � differs only up to a predefined �, respectively. The 

computation of the conditional expectation in (2) is called the E-step whereas the derivation 

of the maximum in (2) constitutes the M-step of the EM algorithm. As described in [3], the 

likelihood � �, y� �  is highly non-linear in � and is difficult to maximize, while the complete 

likelihood �c �, ,x y� �  employed in the M-step can often be computed in closed form. This is 
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the main reason for the widespread use of the EM algorithm. A further advantage of the EM 

algorithm over other maximum likelihood methods lies in the good convergence behavior of 

the iterative scheme. 

3.3 Effective Computational Formulas for the BMAP 

Recall, the observed data in a BMAP is t b t b t bn n1 1 2 2, , , , , ,� � � � � �� �� . The generator of the 

CTMC X t t� �� �: � 0  underlying the BMAP constitutes the missing data. We assume that N t( )  

is the counting process of the batch sizes for arrivals. Let t k nk:1� �� � be the sequence of 

arrival-times. Without loss of generality, we assume t0 0�  and t Tn � . Considering the 

likelihood estimates of the EM algorithm introduced above, we show in the following how to 

maximize the likelihood for the parameter set of a BMAP. 

First of all, we have to define the complete likelihood of the BMAP using the observed 

data y and the non-observable data x 

�
c
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where P m� � and � i  are defined as above, s k tjj

m k

k� �� �
 

� �
0

	 , and bk is the batch size of the k-th 

arrival. The first term of the right hand side of Eq. (3) specifies the probability of starting the 

CTMC in state i0 1� �. For each arrival epoch of the BMAP, the second term describes the 

transient trajectory up to a state i km k� �� � from which absorption occurs. The last portion of Eq. 

(3) represents the transition from the transient state i km k( )� � to the absorbing state 0 and the 

restarting of the process in state i k0 1�� �  with an arrival of batch size bk . 

In order to simplify the notation in the estimation step, we define the sufficient statistics T, 

A A1� � � �, ,� M  and s as follows. For 1 � i, j � N and i j�  we define Ti j,  as: 

Ti j t t T X t i X t j N t N t, # , , ,� � � � � � � �0 � � � � � � � �� �  (4) 

Ti j,  is the number of transient state transitions from state i to state j without an arrival. For 

1 � m � M and 1 � i, j � N we define A m i j� � ,  as: 

A m t k n X t i X t j N t N t mi j k k k k k� � � � � � � � � �� �, # , , ,� � � � � � � � �1  (5) 

A m i j� � ,  is the number of absorbing state transitions from state i to state j with an arrival of 

batch size m at arrival-times tk . Finally, for 1 � i � N we define si  as: 

si

T

X t i dt� �� � � �� �
0

, where � �� �  is the indicator function. (6) 

si  captures the total time the CTMC resides in state i. 
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The key idea of these sufficient statistics is to capture the complete likelihood expression 

in a more intuitive fashion. Typically, the sufficient statistics can be determined by 

numerically tractable characteristics of the CTMC. These sufficient statistics can easily be 

used to rewrite and simplify the expression of the complete likelihood in Eq. (3). That is: 

�
Ic
i

X i

i

N
s

i

N

i j
j j i

N

i

N

i j

m

j

N

i

N

m

M

e mi i i i j i j� �, , , , ,

,
,
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�

  z    


 
 

 



0

1

0

1 11 111

0  (7) 

Intuitively, the second product of Eq. (7) symbolizes the sojourn time of the CTMC for each 

state i. The third product of Eq. (7) captures the behavior for all transient state transitions 

between states i and j. Similarly, the last product of Eq. (7) represents the absorbing state 

transitions between states i and j with arrivals of batch size m. 

When adopting (2) to the considered case of a BMAP, we have to recognize that 

y � t b t b t bn n1 1 2 2, , , , , ,� � � � � �� ��  is completely characterized by the counting process N t( )  

introduced above. This leads directly to Eq. (8) with the following abbreviations (9) to (12) 

for ease of notation. In Eq. (8), the maximization �� i  of � i  is already given in a natural way. 

Furthermore, it can be shown that using the definition of a BMAP and appropriate partial 

differentiation, Eq. (8) is maximized by Eq. (13). Additionally to the maximization by partial 

differentiation, each of the expressions in Eq. (13) utilizes the maximized sufficient statistics 

(9) to (12) in a very intuitive manner. For example, � ,D 0� �i j  is the ratio of the total number of 

transient state transitions between states i and j and the total time spent in state i. 

The expressions (8) to (12) in Figure 4 represent the E-step of the EM algorithm, while the 

expressions in Figure 5 represent the M-Step of the EM algorithm. For ease of notation, we 

define R( )k  for k n� �1 1, ,�  as R 1( )n �  1  and R f R( ) ( )k t kb kk
� � �	� � 1 . Let 1i  denote the 

i-th unity column vector. Eqs. (10) and (11) can be transformed to integrals over matrix 

exponentials by means of probability laws. We omit these transformations as well as the 

detailed evaluation of Eqs. (9) and (12) because of space limitations. Already for an MMPP, 

the problem with the practical applicability of the EM algorithm for parameter estimation lies 

in the stable numerical computation of integrals over matrix exponentials as specified in such 

equations. Ryden [12] proposed a diagonalization method to compute e tQ , but this approach 

relies on the diagonalization property of the matrix Q. It is known that decomposition 

techniques like diagonalization are in general not stable numerical methods for computing 

matrix exponentials. 

For efficient and reliable calculation of (integrals over) matrix exponentials of the 

transformed equations of (9) to (12), we have derived effective computational formulas based 

on the randomization technique [5] enhanced by a stable calculation of Poisson probabilities. 

Again, we omit these formulas because of space limitations. Furthermore, we adopted the 

scaling procedure proposed in [12] for calculating the sufficient statistics �
,Ti j , 

� , , �, ,A A1� � � �i j i jM� , �si , �� i , and the likelihood estimate �( , )� r� � y . This scaling procedure is 

necessary because these quantities can take extremely small or extremely large values. 
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E-step: 
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Figure 4. E-step for parameter estimation of BMAPs 
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Figure 5. M-step for parameter estimation of BMAPs 

 

3.4 BMAP Traffic Modeling Framework 

As stated above, we customize the batch Markovian arrival process such that different lengths 

of IP packets are represented by rewards of the BMAP. In order to represent an aggregated 

traffic stream utilizing the BMAP, we apply the parameter estimation procedure introduced 

above for a BMAP with N transient states and a maximum batch size of M. The choice of N 

and M is crucial for an accurate capturing of the interarrival process and the reward process of 

the aggregated traffic, respectively. Note, that the run-time of the EM algorithm scales 

linearly with respect to the number of samples n of the considered trace, but is independent of 

the choice of M. Thus, this modeling approach can be effectively applied for arbitrary packet 

length (i.e., reward) distributions by an increasing value of M. 

The underlying trace file, which constitutes the aggregated traffic, comprises of packet 

interarrival-times as well as the corresponding packet lengths. Recalling the BMAP 
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definition, the mapping process of packet lengths to BMAP rewards results in a BMAP 

parameter set, i.e., � and D D0� � � �, ,� M , of reasonable size M N N� �1 2� � . We map the 

packet lengths onto the discrete packet lengths sm , for 1 � m � M, where sm  is the average 

packet length of all packets of the considered trace comprising of packet lengths between 

L m M� �1� �  bytes and L m M�  bytes, where L denotes the maximum packet length of the 

considered IP network. In the case of Ethernet LAN the maximum transfer unit (MTU) of 

1500 bytes determines this maximum packet length. Therefore, arrivals with batch size m, 

1 � m � M, represent packet arrivals with a packet length of sm  bytes. Note, that this mapping 

process is applied for ease of notation only. Without this mapping, the proposed estimation 

procedure can be applied for estimating the rate matrices D D D0 1� � � � � �, , ,s sM� , where rate 

matrices D m� �, m s sM� 0 1, , ,�� �, are empty. The estimation of these matrices obviously 

requires the same computational effort. Moreover, the estimated matrices are identical to the 

matrices D D0� � � �, ,� M , which are computed when the mapping process is applied. 

 

4 Comparative Study of Aggregated IP Traffic Modeling 

As stated above, the synthetic traffic model comprising of generally distributed sources is not 

analytically tractable. Thus, it can be employed for simulation studies only. To overcome this 

restriction, we utilize the traffic modeling framework introduced in the previous section with 

a trace file comprising of 1,500,000 samples (measured 10.00 a.m. 13 December 2000 at the 

dial-up modem/ISDN link). This trace file comprises of packet interarrival-times and the 

corresponding packet lengths. Based on this trace file the BMAP parameter estimation 

procedure is applied for a 3-state BMAP N � 3 with a maximum batch size of M � 3. Recall, 

the choice of M is crucial for the mapping process of packet lengths to BMAP rewards and 

corresponds to, but is not restricted by the fact that a large amount of packets comprise of 

three different packet lengths (see Table 1 and Figure 3). Recalling the mapping process of 

packet lengths to BMAP rewards, arrivals with batch size m, 1 � m � M, represent packet 

arrivals with a packet length of sm  bytes. The average packet lengths sm  (M � 3) of our 

measurements are as follows: s1 94  bytes, s2 575  bytes, and s3 1469�  bytes. The 

considered estimation procedure is quite effective and requires less than 20 minutes of CPU 

time on a Pentium III PC with 128 MB of main memory. 

The following shows the effectiveness of our BMAP modeling approach, compared with 

MMPP and Poisson process, by means of visual inspection of sample paths over multiple 

time-scales, by presenting important statistical properties, by formal analysis of traffic 

burstiness as well as by investigations of queuing behavior. Figure 6 and 7 plot sample paths 

of the measured traffic (Figure 6, left) compared with the sample paths of the aggregated 

traffic streams of the customized BMAP (Figure 6, right), the MMPP (Figure 7, left), and the 

Poisson process (Figure 7, right), respectively. For sample-path construction of the MMPP 
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and the Poisson process, we associate the average packet length of all IP packets comprising 

of 315 bytes to the arrival-times of the MMPP and the Poisson process. The aggregated traffic 

streams of the MMPP and the Poisson utilized for sample-path construction comprise of the 

same number of samples as the measured trace file. Note, that the parameter matrices D 0� �  
and D 1� �  of the MMPP have also been estimated by application of the EM algorithm for 

BMAP. This is accomplished by restriction of D 1� �  to diagonal entries that are associated 

with the state-dependent Poisson arrival-rates of the MMPP. The arrival-rate of the Poisson 

process is naturally given by the mean arrival-rate of the measured trace file. In order to show 

the effectiveness of our approach these sample paths are plotted on four different time-scales, 

i.e. 0.001 sec, 0.01 sec, 0.1 sec, and 1.0 sec. Figure 6 and 7 evidently show that the 

customized BMAP authentically captures the average transferred data volume per time unit 

and exhibits traffic burstiness over multiple time-scales in the considered scenario. Moreover, 

these sample paths show the clear advantage of the customized BMAP over the MMPP and 

the Poisson process, which fail to capture the original sample path over almost all time-scales. 

Table 2 presents additionally statistical properties for the data rates of the measured traffic, 

the BMAP, the MMPP, and the Poisson process, on different time-scales in terms of mean, 

standard deviation, skewness, and kurtosis. Recall, that the mean gives the center of the 

distribution and the standard deviation measures the dispersion about the mean. The third 

moment about the mean measures skewness, the lack of symmetry, while the forth moment 

measures kurtosis, the degree to which the distribution is peaked. In Table 2, skewness and 

kurtosis are standardized by an appropriate power of the standard deviation. We observe, that 

mean and standard deviation of the measured traffic and the customized BMAP perform quite 

similar over the considered time-scales, with exception of the BMAPs standard deviation on 

 

time unit in sec. mean standard deviation skewness kurtosis
measured traffic 27.63 153.02 6.72 52.77

customized BMAP 27.70 157.90 8.12 84.34
MMPP 27.65 118.39 5.58 42.73

Poisson process 27.65 93.37 3.38 14.46
measured traffic 276.27 697.46 4.21 29.03

customized BMAP 277.01 662.32 3.82 23.14
MMPP 276.47 491.13 2.81 13.84

Poisson process 276.49 295.82 1.07 4.14
measured traffic 2762.64 2240.81 1.44 6.15

customized BMAP 2770.10 2191.71 1.27 5.15
MMPP 2764.61 1672.45 0.90 4.21

Poisson process 2764.86 933.00 0.33 3.11
measured traffic 27621.50 10954.80 0.60 3.21

customized BMAP 27697.30 6929.95 0.41 3.19
MMPP 27643.70 5413.94 0.28 3.05

Poisson process 27643.70 2972.29 0.03 2.94

0.001

0.01

0.1

1

 

Table 2. Statistical properties of data rates on different time-scales 
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Figure 6. Sample paths of the measured traffic (left) 

and the customized BMAP (right) at different time-scales 
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Figure 7. Sample paths of the MMPP (left) and the Poisson process (right) 

at different time-scales 
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the largest time-scale. The skewness of the measured traffic is quite similar on medium time-

scales, i.e., 0.01 sec and 0.1 sec, while the customized BMAP overestimates the skewness on 

the smallest time-scale and underestimates it on the largest time-scale. Furthermore, the last 

column of Table 2 indicates, that kurtosis, i.e., peakedness, is well captured on the three 

largest time-scales, whereas the BMAP significantly exceeds the measured traffic on the 

smallest time-scale. This is, because on the smallest time-scale the various packet lengths of 

the measured traffic cannot be represented exactly by only three ( M � 3) different reward 

values, i.e., packet lengths. This effect diminishes with increasing value of M. Moreover, 

Table 2 evidently shows, that the MMPP as well as the Poisson process are clearly inferior 

compared with the customized BMAP and loosely capture standard deviation, skewness and 

kurtosis, over all considered time-scales. 

These observations are emphasized by the analysis of traffic burstiness, which can be 

expressed in terms of the Hurst parameter H. Figure 8 plots the R/S statistics [15] of the 

measured traffic, the customized BMAP, the MMPP as well as the Poisson process. The 

degree of traffic burstiness H, can easily derived by the slopes of linear regression plots of the 

R/S statistics. As expected, the Poisson process (H = 0.5558) fails to capture the traffic 

burstiness, while the MMPP (H = 0.6408) and the customized BMAP (H = 0.6418) both 

indicate a significant amount of traffic burstiness compared with the Hurst parameter of the 

measured traffic (H = 0.6785). 
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Figure 8. R/S statistic plot of the trace and the analytically tractable models 
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Figure 9. Complement distribution of queue length Q of single server queue 

with deterministic service time for different traffic intensities ��

 

The practical applicability of our BMAP modeling approach can be emphasized by the 

analysis of the queuing performance. As proposed in [1], we utilize a simple queuing model 

with deterministic service time and unlimited capacity for investigations of the complement 

distribution of the queue length. Figure 9 depicts the complement distribution of the queue 

length Q of the BMAP/D/1 queuing system, the MMPP/D/1 queuing system and the M/D/1 

queuing system (using the Poisson process), compared with the simulations performed with 

the measured traffic for different traffic intensities �. It is obvious that the BMAP model 

shows a similar behavior in terms of queuing performance for low traffic intensities, i.e., 

� � 0 3.  and � � 0 4. . For traffic intensities of � � 0 5.  and � � 0 6.  the customized BMAP 

matches the distribution of the measured traffic up to medium load. As expected, the Poisson 

process loosely performs for all considered traffic intensities. Obviously, the MMPP 

outperforms the Poisson process, but is significantly inferior in capturing the complement 

distribution of the queuing length, compared with the customized BMAP for all considered 

traffic intensities. 
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Conclusions 

We present a detailed analysis of IP traffic measurements recently conducted at an Internet 

service provider (ISP) dial-up link and derive parameterized general distributions for session-

level, connection-level, and packet-level characteristics. Moreover, we observe that almost all 

IP packets comprise of three dominating packet lengths. Based on these observations, we 

introduce an aggregated traffic model for IP networks that is both analytically tractable and 

closely captures the statistics of the measured traffic data. The key idea of this aggregated 

traffic model lies in customizing the batch Markovian arrival process such that these different 

lengths of IP packets are represented by rewards (i.e., batch sizes of arrivals) of the BMAP. 

We introduce an efficient method for estimating the parameters of a BMAP with the EM 

algorithm. In fact, we present efficient computational formulas for the E-step of the EM 

algorithm and show how to utilize the EM algorithm for the effective parameter estimation of 

BMAPs. In order to demonstrate the advantages of the BMAP modeling approach over other 

widely used analytically tractable models, we compare the customized BMAP with the 

MMPP and the Poisson process by means of visual inspection of sample paths over four 

different time-scales, by presenting important statistical properties, by formal analysis of 

traffic burstiness, and by queuing system analysis. 
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