

TCP with Adaptive Pacing for Multihop Wireless Networks*

Sherif M. ElRakabawy, Alexander Klemm, and Christoph Lindemann
University of Dortmund

Department of Computer Science

August-Schmidt-Str. 12

44227 Dortmund Germany

http://mobicom.cs.uni-dortmund.de/

ABSTRACT
In this paper, we introduce a novel congestion control algorithm
for TCP over multihop IEEE 802.11 wireless networks
implementing rate-based scheduling of transmissions within the
TCP congestion window. We show how a TCP sender can adapt
its transmission rate close to the optimum using an estimate of the
current 4-hop propagation delay and the coefficient of variation of
recently measured round-trip times. The novel TCP variant is
denoted as TCP with Adaptive Pacing (TCP-AP). Opposed to
previous proposals for improving TCP over multihop IEEE
802.11 networks, TCP-AP retains the end-to-end semantics of
TCP and does neither rely on modifications on the routing or the
link layer nor requires cross-layer information from intermediate
nodes along the path. A comprehensive simulation study using ns-
2 shows that TCP-AP achieves up to 84% more goodput than TCP
NewReno, provides excellent fairness in almost all scenarios, and
is highly responsive to changing traffic conditions.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General – data

communications.

General Terms
Algorithms, Design, Performance.

Keywords
Analysis and design of transport protocols, IEEE 802.11 wireless
networks, End-to-end congestion control, Performance evaluation.

1. INTRODUCTION
Multihop wireless networks using IEEE 802.11 possess several
properties, which are different to the wired Internet for which the
widely deployed TCP NewReno implementation has been
optimized. Opposed to wired networks, in IEEE 802.11 networks
the wireless channel is a scarce resource shared among nodes
within their radio range. Furthermore, channel capture, hidden and
exposed terminal effects, and the IEEE 802.11 medium access
control constitute features of wireless multihop networks not

* This work was funded in part by the German Research Council (DFG)
under Grant Li-645/12-2.

present in a wired IP network. In fact, for multihop wireless
networks, most losses experienced by TCP are due to packet drops
at the link layer and not due to buffer overflow [9]. Furthermore,
since the congestion control of TCP NewReno is based on lost
data packets, the size of its congestion window is overshooting
rather than proactively sense incipient congestion by monitoring
the network traffic. Because of all these features, TCP NewReno
possesses quite poor performance in multihop wireless networks,
as well as exhibits severe unfairness among competing TCP
flows.

Improving the performance of reliable data transport in mobile ad
hoc networks (MANET) by explicit rate control has been explored
in several non-TCP protocols e.g., [5], [17]. Instead of sending
new packets into the network only when old packets have been
acknowledged, these approaches send packets at a pre-determined
rate. TCP Pacing is a hybrid between a pure rate-based
transmission control and TCP’s use of the congestion window to
trigger new data packets to be sent into the network. Based on the
intuition that bursty traffic produces higher queuing delays, more
packet losses and lower goodput, smoothing the behavior of TCP
traffic by pacing shall result in improved performance and
fairness.

Aggarwal, Savage, and Anderson presented a comprehensive
evaluation of TCP with pacing for the Internet [2]. They
considered an implementation of pacing based on a leaky bucket
algorithm with evenly spaced timeouts. As duration of the
timeouts they considered the ratio of the averaged measured round
trip time and the current window size. Their study showed that
contrary to intuition for the Internet, TCP Pacing often exhibits
significantly less goodput than regular TCP. In fact, TCP Pacing
exhibits worse performance than regular TCP for scenarios with
large buffers due to delaying congestion signals of the network.
On the other hand, pacing improves TCP fairness and packet drop
rates when round trip times are highly variable as typical for
multihop wireless networks.

In this paper, we introduce a novel congestion control algorithm
for TCP over multihop IEEE 802.11 networks implementing rate-
based scheduling of transmissions within the TCP congestion
window. Rather than evenly spacing the transmissions of packets
within the congestion window as proposed in [2], in our approach,
a TCP sender adaptively sets its transmission rate using an
estimate of the current 4-hop propagation delay and the coefficient
of variation of recently measured round-trip times. The 4-hop

propagation delay describes the time elapsed between
transmitting a TCP packet by the TCP source node and receiving
the packet at the node which lies 4 hops apart from the source
node along the path to the destination. The novel TCP variant is
denoted as TCP with Adaptive Pacing (TCP-AP). Opposed to
previous proposals for improving TCP over multihop IEEE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiHoc’05, May 25–27, 2005, Urbana-Champaign, Illinois, USA.
Copyright ACM 1-59593-004-3/05/0005…$5.00.

802.11 networks, TCP-AP retains the end-to-end semantics of
TCP and does neither rely on modifications on the routing or the
link layer nor requires cross-layer information from intermediate
nodes along the path. A comprehensive simulation study using ns-
2 [8] shows that TCP-AP achieves up to 84% more goodput than
TCP NewReno, provides excellent fairness in almost all scenarios,
and is highly responsive to changing network traffic conditions. In
particular, TCP-AP provides fair sharing of the available
bandwidth, even when competing flows are not within each
other’s transmission range, but within each other’s interference
range, since the proposed algorithm relies on the end-to-end
measurement of the interference experienced by a TCP
connection.

The remainder of this paper is organized as follows. Section 2
summarizes related work on TCP for multihop wireless networks
and Section 3 describes the settings of the simulation environment
used throughout this paper. In Section 4, we introduce the novel
TCP congestion control algorithm. A comprehensive performance
study of TCP-AP versus TCP NewReno with and without
dynamically delaying acknowledgements is presented in Section
5. Finally, concluding remarks are given.

2. RELATED WORK
Fu et al. [9] pointed out the hidden terminal problem in wireless
multihop networks and experimentally showed that for a chain
topology the optimal windows size, for which TCP achieves best
throughput, is roughly given by 1/4 of the hop count of the path.
Furthermore, they proposed two enhancements on the link layer:
adaptive pacing to distribute traffic on the link layer among
intermediate nodes in a more balanced way and link layer RED to
throttle TCP senders when incipient congestion is detected. Using
simulation, they showed that depending on the scenario, these link
layer enhancements improve TCP goodput by 5% to 30% due to
better spatial reuse. Xu et al. [18] proposed the neighborhood
RED (NRED) scheme on routing layer to throttle TCP senders
when incipient congestion is detected, by purposely dropping TCP
packets on intermediate nodes. Nodes forming a neighborhood
manage a virtual distributed queue in order to coordinate the
packet drops of individual nodes. Using simulation, the authors
showed that NRED could substantially improve fairness in
multihop wireless networks.

Our approach differs fundamentally from [9], [18]. TCP-AP just
requires slight modifications on the transport layer and does
neither require modifications on the routing layer as [18] and link
layer as [9], nor extra communication between neighboring nodes.
As a consequence, TCP-AP can be incrementally deployed.
Furthermore, TCP-AP integrally improves both fairness and
goodput without provoking packet losses.

Sundaresam et al. [17] and Chen et al. [5] introduced two new
special-purpose transport protocols for multihop wireless
networks. Both protocols employ pure rate-based transmission of
packets, where the transmission rate is determined using feedback
from intermediate nodes along the path. In [17], the authors
propose to dynamically adjust the transmission rate according to
the maximum packet queuing delay on intermediate nodes along
the network path. Chen et al. [5] also proposed an explicit rate-
based flow control scheme for multihop wireless network. Using
cross-layer information from both the MAC and the routing layer,
the sending rate of a flow is conveyed from intermediate nodes

along the path in special control headers attached to each data
packet.

In contrast to [5], [17], TCP-AP retains the end-to-end semantics
of TCP without relying on any cross-layer information from
intermediate nodes along the path. As a consequence, TCP-AP
can be incrementally deployed, since TCP-AP is not only TCP-
friendly, but also TCP compatible.

Altman and Jiménez [1] proposed a dynamic scheme for delaying
ACKs in order to improve TCP throughput in multihop wireless
networks. Using simulation, they showed that for an h-hop chain,
delaying ACKs yields around 50% more throughput for TCP
NewReno. Building upon their results, we are also considering
dynamically delaying ACK, though, not only for TCP NewReno,
but also for TCP-AP. Furthermore, we evaluate the dynamic
delayed ACK scheme for a comprehensive set of network
topologies rather than just for an h-hop chain.

Several authors introduced TCP enhancements for coping with
mobility in ad hoc wireless networks over IEEE 802.11. Holland
and Vaidya [11] introduced explicit link failure notification
(ELFN) as a feedback mechanism from the network in order to
help TCP distinguish congestion losses and losses induced by link
failures. Yu [20] proposed two cross-layer communication
mechanisms that further improve TCP performance in case of
packet losses due to mobility. We focus on TCP performance and
fairness in static wireless networks instead, though, our results
may well be utilized together with their findings in order to adapt
TCP-AP for mobile wireless multihop networks.

3. SIMULATION ENVIRONMENT
We conduct simulation experiments using the network simulator
ns-2 [8]. All MAC layer parameters of IEEE 802.11 are
configured to provide a transmission range of 250m and a carrier
sensing range as well as an interference range of 550m. Thus, our
setting is consistent with real wireless networks, in which the
transmission range of a node is typically smaller than its
interference range. The transmission of each data packet on the
MAC layer is preceded by a Request-To-Send/Clear-To-Send
(RTS/CTS) handshake. We consider a channel bandwidth of 2
Mbit/s and set the size of TCP and UDP data packets to 1460
bytes. For all nodes, we assume a buffer size of 50 packets. Unless
otherwise stated, in all considered topologies, each node is 200
meters apart of each of its adjacent nodes. As ad hoc routing
protocol we choose AODV [16].

In order to isolate the IEEE 802.11 MAC-induced deficiencies of
TCP in multihop wireless networks we only consider static
scenarios throughout this paper. Note that route failures do not
only occur in mobile, but also in static scenarios due to the
interaction between the MAC and the routing layers in case of
congestion [19]. Thus, we conjecture that in scenarios with low
mobility (e.g. pedestrian speed), the performance of TCP-AP is
similar to the performance in static scenarios.

In all experiments, except for experiments showing transient
behavior, we conduct steady-state simulations starting with an
initially idle system. In each run, we simulate either TCP or UDP
connections, dependent on the scenario, until 55.000 packets are
successfully transmitted, and split the simulation output in 11
batches of size 5.000 packets. The first batch is discarded as initial
transient. The considered performance measures are derived from

the remaining 10 batches with 95% confidence intervals by the
batch means method.

4. RATE BASED CONGESTION CONTROL

FOR TCP

4.1 Motivation
Several researchers identified the interaction of TCP with the
underlying routing and MAC layers as key factor for the poor
performance of TCP in IEEE 802.11 multihop wireless networks.
If we neglect mobility-related problems of TCP in such networks,
most important deficiencies of TCP arise from TCP’s congestion
control algorithm. First, TCP’s window-based congestion control
leads to packet bursts when received acknowledgments trigger the
transmission of several data packets, e.g., when receiving a
cumulative ACK. Due to the spatial reuse constraint of the
wireless channel in IEEE 802.11 multihop wireless networks,
neighboring nodes cannot transmit simultaneously. Thus, packet
bursts result in increased contention on the wireless channel. This
link layer contention may lead to packet drops due to the hidden
and exposed terminal problems [18]. Second, TCP’s congestion
control algorithm relies on packet losses as indication of
congestion and, thus, provokes losses in order to identify spare
bandwidth. In IEEE 802.11 multihop wireless networks, this
behavior results in increased congestion, causing significant
performance degradation for TCP [9]. Recall that network
congestion often triggers (false) route failures, even in static
wireless networks, since the routing protocol cannot distinguish
between a packet loss due to congestion and a packet loss due to a
broken route [19].

To overcome both deficiencies stated above while preserving TCP
compatibility, we propose to incorporate a rate-based transmission
algorithm into TCP’s window-based congestion control. Our
approach is denoted as TCP with Adaptive Pacing (TCP-AP). The
problem of packet bursts is solved by spreading the transmission
of successive data packets according to the computed transmission
rate, which accounts for the spatial reuse constraint in IEEE
802.11 multihop wireless networks. Furthermore, by proactively
identifying incipient congestion, i.e. before congestion-related
losses actually occur, TCP-AP is able to adjust the transmission
rate and, hence, reduce contention on the MAC layer. In contrast
to TCP Pacing for the Internet [2], where the transmission of a
window of packets is evenly spread over the duration of a round
trip time (RTT), our approach schedules the transmission of
packets based on both the size of the congestion window and the
computed transmission rate. As long as the size of the congestion
window is larger than the number of packets in flight, new packets
are scheduled for transmission according to the current
transmission rate.

4.2 Identification of Incipient Congestion
Due to its end-to-end semantics, TCP’s congestion control
algorithm is based on the measurement of round trip times and
packet losses. In fact, in current TCP variants such as Reno and
NewReno, the actual identification of congestion is solely laid
upon the observation of packet losses. Therefore, TCP increases
the load issued into the network until a packet loss is detected,
where such packet loss identifies congestion. Note that although
TCP Vegas uses RTT measurements in addition to packet losses
to identify congestion, it still suffers from bursty packet
transmissions in wireless multihop networks.

Considering the characteristics of IEEE 802.11 multihop
networks, it becomes obvious that a transport protocol which
actually provokes packet drops to get network feedback has to
suffer from poor performance. Thus, our goal is to develop a
congestion control algorithm that identifies high contention on the
network path of the TCP connection and proactively throttles the
transmission rate before losses occur. In order to retain the end-to-
end semantics of TCP, such congestion control algorithm requires
a measure obtainable at the TCP entities, which quantifies the
degree of contention on the network path. We propose the
coefficient of variation of recently measured round trip times,
covRTT, as key measure for the degree of the contention on the
network path. This measure is given by:

2

1

1
()

1

N

i

i

RTT

RTT RTT
N

cov

RTT

=

−
−

=
∑

Here, N is the number of considered RTT samples, RTT is the
mean of the samples, and RTTi denotes the value of the i-th RTT
sample.

To justify the applicability of the coefficient of variation covRTT as
an appropriate measure for identifying contention, we analyze the
influence of network contention on the development of the RTT
samples. Using simulation, we observe that the fluctuation of the
RTT samples, which can be quantified by covRTT, provides a
reliable measure for the degree of contention. As first basic
topology, we consider a cross scenario of two chains, each of five
nodes, as illustrated in Figure 1. On the horizontal chain, a TCP
connection with a fixed transmission rate of 100 KBit/s is used to
measure the RTT samples at the TCP sender. On the vertical
chain, a UDP connection with varying transmission rates produces
background traffic. The background traffic starts at time T1=30s
and stops at time T2=60s. Figures 3 to 5 show the influence of the
background traffic on the RTT samples of the TCP connection.
The left graph of each figure plots the measured RTT samples of
the TCP connection for background traffic of 150 KBit/s, 200
KBit/s, and 250 KBit/s, respectively. The right graph shows the
corresponding coefficient of variation covRTT. Note that the
available bandwidth in this topology lies above 300 KBit/s.
Although the offered load of both traffic sources is far below the
available bandwidth in Figure 3, the TCP connection experiences
significant fluctuation in the RTT samples when its flow competes
for the shared channel with the UDP background flow. With
increasing background traffic, we observe increasing fluctuation
in the measured RTT samples, as shown in Figures 4 and 5.

As a second basic topology, we consider two parallel chains with
a distance of 400m as shown in Figure 2. Consistent with the cross
topology, we regard a TCP flow with fixed rate on one chain and
a variable-rate UDP flow on the other chain. Note that since both

UDP

TCP

UDP

TCP

Figure 1: Cross topology

400m

UDP

TCP

400m

UDP

TCP

Figure 2: Symmetric parallel

chains topology

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

R
o
u

n
d

 T
r
ip

 T
im

e
 [

s]

Simulation Time [s]

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
o
e
ff

ic
ie

n
t

o
f

V
a
r
ia

ti
o
n

Simulation Time [s]

Figure 3: Influence of UDP background traffic with 150 KBit/s on RTT samples

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

R
o
u

n
d

 T
r
ip

 T
im

e
 [

s]

Simulation Time [s]

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
o
e
ff

ic
ie

n
t

o
f

V
a
r
ia

ti
o
n

Simulation Time [s]

Figure 4: Influence of UDP background traffic with 200 KBit/s on RTT samples

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

R
o
u

n
d

 T
r
ip

 T
im

e
 [

s]

Simulation Time [s]

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
o
e
ff

ic
ie

n
t

o
f

V
a
r
ia

ti
o
n

Simulation Time [s]

Figure 5: Influence of UDP background traffic with 250 KBit/s on RTT samples

chains lie within each other’s interference range, they compete for
the same wireless medium. However, no scheduling can be
achieved on the MAC layer, since both chains are placed beyond
each other’s transmission range. That is, nodes belonging to one
chain cannot hear the RTS-CTS sequence transmitted by nodes
belonging to the other chain. Simulation results obtained for this
topology are consistent with the results of the cross scenario. Due
to space limitations, we omit the corresponding curves. Since a
larger number of scenarios comprise of the cross and the parallel
chain topology as basic building blocks, we conjecture that the
coefficient of variation covRTT is an appropriate measure for
identifying contention in multihop wireless networks. This
conjecture is experimentally verified in Section 5 for a wide range
of scenarios. Recall that the measure covRTT can be obtained
without provoking congestion or packet losses.

4.3 The Spatial Reuse Constraint
Besides the measure of contention on the network path, the
derivation of an appropriate transmission rate should also account
for the spatial reuse constraint of IEEE 802.11 multihop wireless
networks. That is, due to the hidden terminal effect, in a chain
topology where the transmission range of each node is about
250m and the interference and carrier sensing ranges are 550m, a
TCP sender at node i can only transmit a packet successfully as
soon as node (i+3) has finished its transmission. We refer to the
time elapsed between transmitting a TCP packet by node i and
receiving the packet at node (i+4) as the 4-hop propagation delay

(FHD).

We recall the spatial reuse constraint of IEEE 802.11 multihop
networks, which is reported in previous studies such as [9], by
considering the static chain topology depicted in Figure 6 where
the inter-node distance is 200m. Assume that node 1 wishes to

4 6 81 2 73 5

Interference range

& sensing range of

node 4 (550m)

Transmission range

of node 4 (250m)

44 66 8811 22 7733 55

Interference range

& sensing range of

node 4 (550m)

Transmission range

of node 4 (250m)

Figure 6: A chain of nodes showing the hidden terminal effect

transmit data to node 2 and node 4 wishes to transmit data to node
5. In this topology, node 4 is a hidden terminal for the
transmission from node 1 to node 2. That is, node 4 can neither
receive the RTS/CTS handshake between node 1 and node 2 nor
sense the data transmission from node 1 to node 2, since node 1 is
out of the sensing range of node 4. Thus, node 4 may transmit to
node 5 while node 1 is transmitting to node 2. This causes a
collision at the receiving node 2, since node 2 is within the
interference range of node 4.

Note that such hidden terminal effects depend mainly on the
characteristics of the network interface as well as the adopted
routing protocol. First, the network interface determines the ratio
between the transmission range and the interference range. Due to
the settings of the network interface considered in this paper,
hidden terminals along the path can be avoided if a transmitting
node delays the transmission of a data packet until the previously
sent packet is forwarded 4 times. Thus, we consider FHD for the
calculation of the transmission rate.

Second, the adopted routing protocol determines the length of the
route in terms of hop count, depending on the employed routing
metrics. In this paper, we consider routing protocols which aim to
minimize the hop count of the route such as AODV [16]. For this
class of routing protocols the node density does not affect the
choice of FHD as the key factor of the spatial reuse constraint. To
illustrate this independence, we consider the simple chain
topology depicted in Figure 7(a). The figure shows the process of
route determination between source node 1 and destination node 8
in a chain topology with different inter-node distances. A potential
route, which may be built by AODV is given by the nodes 1-3-6-
8. Since the remaining nodes are not part of the route, they do not
contribute to the spatial reuse constraint factor. Thus, the node
density in a given network is irrelevant for FHD after the route

1 2 3 4 5 6 7 8

Transmission range

of node 1

Transmission range

of node 3

Transmission range

of node 6

(a)

1 3 6 8

(b)

1 2 3 4 5 6 7 81 2 3 4 5 6 7 811 22 33 44 55 66 77 88

Transmission range

of node 1

Transmission range

of node 3

Transmission range

of node 6

(a)

1 3 6 8

(b)

1 3 6 811 33 66 88

(b)

Figure 7: Example of a route determination with different

inter-node distances: actual node topology (a) and logical node

topology (b)

Table 1: Parameters for the adaptive computation

of the transmission rate

Parameter Meaning

h Number of hops from sender to receiver

b Bandwidth of the wireless interface

tq Average packet queuing delay per node

sdata Size of TCP data packet

sACK Size of TCP ACK packet

tdata Transmission time for TCP data packet

tACK Transmission time for TCP ACK packet

RTT Current round trip time of TCP packets

covRTT Coefficient of variation of RTT samples

FHD Current sample of 4-hop propagation delay

�FHD EWMA of 4-hop propagation delay

has been established. The logical topology, which is actually used
by the routing protocol, is depicted in Figure 7(b).

Note that, since we derive FHD from the measured round trip
times of the TCP packets (RTT), our approach may be arbitrarily
adjusted to estimate propagation delays for other number of hops
(i.e. n-hop delay), e.g. in order to adapt to different settings of the
network interface as well as different routing protocols.

If we assume a network with perfect scheduling on the MAC
layer, the maximum spatial reuse with minimum collisions can be
achieved with a transmission rate Rmax=1/FHD. In fact, this
transmission rate reflects the upper bound of the bandwidth-delay
product for IEEE 802.11 multihop wireless networks. Following
[6], an upper bound for the capacity of a path with h hops in an
IEEE 802.11 multihop wireless network is given by h/4 packets.
Let Tone-way denote the time a packet travels from the sender to the
receiver. This quantity can be computed as

/ 4
one way

T FHD h− = ⋅ . Subsequently, the number of packets in

flight on the way from the TCP sender to the TCP receiver with a
sender’s transmission rate of Rmax, is given by:

 max

1
packets in flight

4
one way

R T h−= ⋅ =

Thus, the number of packets in flight transmitted with the
maximum transmission rate Rmax reflects the maximum capacity
of the network path. Note that for network paths with h < 4, Rmax
is computed using the h-hop propagation delay instead of the 4-
hop propagation delay. Without loss of generality and for ease of

exposition, we only consider network paths with h ≥ 4 in the
subsequent discussion.

In order to use Rmax as an upper bound for the transmission rate,
we need to measure the 4-hop propagation delay FHD of the TCP
data packets. Since the end-to-end semantics of TCP does not
allow using information available on intermediate nodes, we
estimate FHD based on RTT measurements at the TCP sender.
Our estimation algorithm is based on two assumptions: (1)
Contention on the path from the sender to the receiver is similar to
the contention on the backward path and (2) transmission delays
of packets (not including queuing delays) are proportional to the
size of the packets. The first assumption is reasonable, since in
most MANET routing protocols network paths are bidirectional,
i.e., the forward and the backward paths are the same. Even when

the forward and backward paths are different, it is most likely that
both paths lie within each other’s interference range and do not
allow concurrent transmissions. Assumption (2) results from the
medium access method used in IEEE 802.11, which allows the
exclusive transmission at a fixed bandwidth (e.g., 2 Mbit/s) once
the sender has acquired the channel.

The RTT is composed of the sum of the delay experienced by the
data packet on the way from the sender to the receiver and the
delay experienced by the ACK packet sent from the receiver to the
sender. Each of these delays comprise of the time to forward the
packet over h hops, where each forwarding requires a queuing
delay tq and transmission delays tdata, and tACK, respectively. The
parameters involved in the estimation of the 4-hop propagation
delay are given in Table 1. Using the measured RTT, we can
write:

 () ()q data q ACK
RTT h t t h t t= + + +

Solving for tq while using tdata = sdata/b and tACK = sACK/b, we
derive the average queuing delay as:

1

2

data ACK

q

s sRTT
t

h b

+
= −

Subsequently, we can estimate the 4-hop propagation delay of the
TCP data packet:

 4 2data data ACK

q

s s sRTT
FHD t

b h b

−
= + = +

Note that this estimation requires that the TCP sender knows
about the number of hops on the network path to the receiver and
the bandwidth of the wireless network interface. Since this
information is available on the routing and MAC layers at the
source node, no extra overhead is required. A more accurate
estimation of the 4-hop propagation delay may be achieved if the
clocks of both TCP entities are synchronized. If available, this
clock synchronization can be obtained using the Global
Positioning System (GPS) [10]. In Section 5.1, we discuss how
synchronized clocks affect the performance of TCP-AP.

4.4 The Adaptive Pacing Scheme
Since the computation of the adaptive transmission rate should
account for both the current contention on the network path and
the spatial reuse constraint, we incorporate covRTT and FHD in the
transmission rate formula. Recall that a rate of Rmax=1/FHD
specifies an upper bound for the achievable goodput under
optimal conditions, i.e. with perfect scheduling and no contention.
In order to adaptively throttle the transmission rate R according to
the current degree of contention, we use covRTT as additional
decay factor:

�

1

(1 2)RTT

R
FHD cov

=
⋅ +

The coefficient of variation quantifies the percentage of sample
deviation from the mean. However, since we want to quantify the
size of the spectrum in which the samples fluctuate around the
mean, we double the value covRTT in the rate formula.

Note that in favor of a stable transmission rate, we have to
average the measured 4-hop propagation delay samples and

recv() :
 : procedure called upon ACK receipt

: time between successive
packet transmissions

 received ACK

 2 data

InterPacketDelay

RTT s
FHD

h

−
← +

proc
comment
Variables :

 for each do

� �

�

 (1)
 calculate over most recent RTT samples

 (1 2)

pacing_timeout() :

ACK

new old

RTT

new RTT

s

b

FHD FHD FHD
cov N

InterPacketDelay FHD cov

InterPacketDelay

α α

← ⋅ + − ⋅

← ⋅ +
 done

proc
 : procedure called every time

 : current TCP sequence number

: sequence number of last ACK received
: receiver advertised window size
: co

InterPacketDelay

seqno
highestACK
awnd
cwnd

comment
Variables :

ngestion window size

 + min(,)
 send new packet

 stay idle

seqno highestACK awnd cwnd≤if then

else

fi

Figure 8: Congestion control of TCP-AP

employ a reasonable history size N for the computation of the
coefficient of variation. Recall from Section 4.2 that N denotes the
number of the most recent samples used for determining covRTT.
For averaging the 4-hop propagation delay samples, we use the
exponentially weighted moving average (EWMA) with averaging

weight α.

That is:

� � (1)new oldFHD FHD FHDα α= ⋅ + − ⋅

Putting it together, the algorithm given in Figure 8 specifies the
proposed rate-based congestion control executed at the TCP
sender. Note that we preserve the retransmission strategy of
regular TCP for handling packet losses.

We would like to point out that the computational cost for
deriving covRTT could be optimized in a deployed implementation
of TCP-AP. In particular, the standard deviation could be
approximated by the mean absolute deviation without requiring
the calculation of a square root as proposed in [12] for quantifying
the variability of RTT’s.

Obviously, there is a trade-off between the stability of the
transmission rate and the responsiveness of the algorithm. This

trade-off is controlled by the weight α and the history size N. In
the following, we experimentally derive appropriate values for
these two parameters.

4.5 Parameter Tuning and Responsiveness
As responsiveness we denote how quickly the congestion control
algorithm adapts to changing network conditions such as
additional flows competing for the bandwidth. We analyze the

impact of the averaging weight α and the history size N on
goodput, fairness and responsiveness of TCP-AP. Obviously, the

responsiveness of TCP-AP improves for smaller values of α and

0.1 0.2 0.3 0.4 0.5 0.6
0.7 0.8

0.9

10

50

100

150
200

100

120

140

160

180

200

220

240

260

280

300

A
g

g
re

g
a
te

 G
o

o
d

p
u

t

[K
b

it
/s

]

αααα H
is

to
ry

 S
iz

e
N

0.1 0.2 0.3 0.4 0.5 0.6
0.7 0.8

0.9

10

50

100

150
200

100

120

140

160

180

200

220

240

260

280

300

A
g

g
re

g
a
te

 G
o

o
d

p
u

t

[K
b

it
/s

]

αααα H
is

to
ry

 S
iz

e
N

Figure 9: Aggregate goodput for different parameter settings

in the cross topology

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

G
o
o
d

p
u

t
[K

b
it

/s
]

Simulation Time [s]

FTP 1
FTP 2

Figure 10: Responsiveness of TCP-AP

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

G
o
o
d

p
u

t
[K

b
it

/s
]

Simulation Time [s]

FTP 1
FTP 2

Figure 11: Responsiveness of TCP NewReno

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

G
o
o
d

p
u

t
[K

b
it

/s
]

Simulation Time [s]

FTP 1
FTP 2

Figure 12: Responsiveness of TCP NewReno with optimal

CWL

N, since the most recently measured RTT samples gain more
influence on the computed transmission rate. However, we
observe that an appropriate value of N has a more significant

influence on responsiveness than α. This can be attributed to the
fact that in the computation of covRTT, the mean is determined
using a simple moving average. Since the last measured sample
has only a weight of 1/N, the average value cannot respond as
quickly to changing conditions as an EWMA with small
averaging weight.

To find a parameter set which provides good performance in
terms of goodput and fairness while achieving appropriate
responsiveness, we conduct a simulation study using the cross
topology of Figure 1. In this scenario, we define two TCP-AP
flows instead of one fixed rate TCP and one UDP flow. Figure 9
plots the aggregate goodput, i.e. the sum of the goodput achieved

by both flows for different values of α and N. We find that the

highest aggregate goodput is achieved for large values of α and N.
For history sizes of 50 or more samples, the aggregate goodput

increases slightly with increasing α. However, for a history size of
10 samples, the aggregate goodput decreases with increasing
averaging weight. As a reasonable parameter set, which provides
good responsiveness by using a possibly small history size,

combined with adequate goodput, we choose N=50 and α=0.7.
This parameter set achieves a superior compromise between
responsiveness and goodput not only in the cross topology but
also in the symmetric parallel chains topology depicted in Figure
2. Due to space limitations, we omit the corresponding curve.

We evaluate the fairness achieved by our approach for the
different parameter sets by computing Jain’s fairness index [13],
which is defined as:

2

2

1 1

()
n n

i i

i i

F x x n x
= =

=

∑ ∑ ,

where n is the number of flows and xi denotes the goodput
achieved by flow i.

For all parameter sets, TCP-AP achieves a fairness index of more
than 0.99. Thus, our approach perfectly shares the available
bandwidth upon the two competing flows.

To illustrate the transient behavior of TCP-AP compared to TCP
NewReno, Figures 10 to 12 plot the goodput versus time for the
cross topology. For this simulation set, the first TCP flow runs
from the beginning until T2=60s and the second TCP flow starts at
T1=30s and runs until the end of the simulation. Figure 10 shows
that TCP-AP responds quickly to changing network conditions
when new flows start (T1) as well as when flows stop (T2). Using
TCP-AP, both flows utilize the available bandwidth when there
are no competing flows and share the bandwidth fairly when
multiple flows compete for the bandwidth. As already observed in
previous work (e.g. [9], [18]), TCP NewReno suffers from serious
unfairness. From Figure 11, which shows the goodput of two TCP
NewReno flows over time, we observe that the first flow occupies
almost the entire bandwidth during its lifetime, even after the
second flow starts. Thus, the second flow experiences multiple
timeouts and increases the retransmission timeout (RTO). Such
large retransmission timeouts lead to underutilization of the
available bandwidth when the first flow ends at T2. We further
observe that, opposed to TCP-AP, the goodput of TCP NewReno
fluctuates strongly over time. This is due to the inappropriate

Figure 13: 7-hop chain topology with a single flow

strategy of TCP NewReno for adjusting its congestion window,
which results in overshooting the optimal window size rather than
smoothly sensing the available bandwidth.

Similar unfairness can be observed in Figure 12 for TCP with
fixed congestion window limit (CWL), as proposed in [6]. Here,
the congestion window is limited to the optimal value for this
topology, namely one for a 4-hop chain. We find that the first
TCP flow achieves near-optimal goodput during its lifetime but
does not share the bandwidth with the newly started second flow
at T1. Due to the same reasons as for TCP NewReno, the second
flow does not utilize the spare bandwidth, which becomes
available when the first flow stops.

4.6 Competing TCP-AP and TCP NewReno

Flows
Since TCP-AP applies rate-based transmission only within the
TCP congestion window, the number of packets in flight can
never exceed what the window allows. Consequently, TCP-AP is
TCP-friendly by definition, since TCP-AP cannot transmit at a
rate higher than a standard TCP connection operating along the
same path would achieve. On the other side, in multihop wireless
networks in which a TCP-AP flow competes with a TCP
NewReno flow, it is obvious that the TCP NewReno flow will
obtain most of the available bandwidth due to its aggressive
window control. However, as observed in Figure 11, this is a
typical behavior of TCP NewReno, even when competing with
other TCP NewReno flows. In fact, the aggressive behavior of
TCP NewReno would result in the occupancy of most of the
available bandwidth when competing with any transport protocol
implementing proactive congestion control.

Other approaches such as the neighborhood RED scheme [18],
which force TCP NewReno to decrease its aggressive
transmission by purposely dropping packets on intermediate
nodes may yield improved fairness in multihop wireless networks
with mixed TCP flows. Since the deficiencies of TCP NewReno
for multihop wireless networks are well known, such interactions
between NewReno and non-NewReno TCP variants play for
multihop wireless networks a less significant role than in the
Internet.

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

G
o
o
d

p
u

t
[K

b
it

/s
]

Number of Hops

TCP-AP Delayed ACK
TCP-AP

NewReno Delayed ACK
NewReno

Figure 14: TCP goodput without global knowledge

5. COMPARATIVE PERFORMANCE

STUDY
To illustrate the effectiveness of TCP-AP, we present a
comprehensive performance study of TCP-AP versus TCP
NewReno with and without dynamic delayed ACK [1]. The
dynamic delayed ACK approach extends the basic delayed ACK
option for TCP [4] by dynamically setting the parameter d which
represents the number of packets received by the TCP receiver
before an acknowledgment is generated. The parameter d
gradually increases from one to four based on the sequence
numbers of the received TCP packets. Although the delayed ACK
option decreases the frequency of RTT samples measurable by the
TCP sender, this reduction of feedback has no significant impact
on the effectiveness of the adaptive pacing scheme in TCP-AP.

5.1 FTP-Like Data Transfer
In the first set of experiments, we consider scenarios with FTP-
like data transfer in different network topologies. That is, the TCP
sender transmits packets continuously, representing a large file
transfer.

5.1.1 Chain Topology
As a first scenario, we consider an equally spaced chain
comprising of h+1 nodes (h hops) with a single flow as depicted
in Figure 13. TCP packets travel along the chain from the leftmost
node (i.e., the sender) to the rightmost node (i.e., the receiver).
Figure 14 plots the goodput of the examined TCP variants for
varying hop number. We observe that TCP-AP outperforms TCP
NewReno for all hops by up to 84%. In fact, TCP-AP even
outperforms TCP NewReno with delayed ACK for h > 8, whereas
TCP-AP with delayed ACK achieves 7% to 17% more goodput
than TCP-AP.

In order to determine the optimum goodput achievable in an h-hop
chain, we conduct a further experiment, in which the examined
TCP variants are provided with global knowledge. That is, we
utilize synchronized clocks for both TCP sender and receiver for
TCP-AP to determine more accurate estimates of the 4-hop
delays. For TCP NewReno, we set the optimal congestion window
limit size (CWL) for each number of hops according to [6]. We
compare these TCP variants to a paced UDP flow with an
optimized transmission rate for each number of hops. Similar to
TCP, the UDP packet size is set to 1460 bytes, whereas the

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

G
o
o
d

p
u

t
[K

b
it

/s
]

Number of Hops

Paced UDP
TCP-AP Delayed ACK with sync clocks

TCP-AP with sync clocks
TCP NewReno with optimal CWL

Figure 15: TCP goodput with global knowledge

overhead caused by TCP packet retransmissions and
acknowledgments is neglected. We use paced UDP as an upper
bound for the highest goodput achievable in such scenario. Figure
15 shows that TCP-AP with synchronized clocks achieves up to
27% more goodput than TCP NewReno with optimal CWL,
whereas applying delayed ACK yields 9% to 36% further
improvement for TCP-AP. In fact, TCP-AP with delayed ACK
achieves only 5% to 16% less goodput than the simulative upper
bound given by paced UDP. Note that delayed ACK cannot be
applied for TCP NewReno with optimal CWL. This is because for
h ≤ 10, CWL is less than four, and thus, smaller than the
parameter d used for delayed ACK. Therefore, the TCP receiver
would experience a lack of TCP packets and time out each time
the TCP sender transmits a total of CWL packets, causing severe
goodput decrease.

5.1.2 Symmetric Parallel Chains Topology
In this scenario, we use the symmetric parallel chains topology
illustrated in Figure 2, where we consider one TCP flow for each
chain. Figure 16 plots the goodput achieved by the two individual
flows as well as the aggregate goodput for both flows. We find
that for TCP NewReno, the first flow utilizes most of the available
bandwidth at the cost of starving the second flow. In fact, we
notice that the second flow only achieves about 10% of the overall
goodput. TCP NewReno with delayed ACK improves the goodput
of both flows, though, the fairness remains insufficient. Opposed
to TCP NewReno, TCP-AP with and without delayed ACK
achieve optimal fairness. In fact, TCP-AP even achieves a better
utilization of the available bandwidth, obtaining more aggregate
goodput than TCP NewReno. This is because TCP-AP minimizes
both inter-node and inter-chain contention by adapting its
transmission rate according to the fluctuation of the RTT samples.
Figure 17 shows the coefficient of variation of TCP-AP for both
FTP flows. We notice that it fluctuates within the same range for
both flows, namely between zero and one, according to the level
of network contention at a specific time. Note that mechanisms
that require a direct communication between nodes in order to
improve TCP fairness would not yield any gain in scenarios like
the symmetric parallel chains topology. This is because the
distance between the chains does not allow inter-chain
communication.

5.1.3 Asymmetric Parallel Chains Topology
To evaluate the impact of the chain length on TCP fairness, we
consider an asymmetric parallel chains topology. Extending the
topology in Figure 2, we expand the upper chain by three hops in
each direction. Figure 18 plots the goodput results for this
scenario. We observe that for both TCP NewReno and TCP
NewReno with delayed ACK, FTP 1 running over the shorter
chain obtains almost all of the available bandwidth, letting FTP 2
nearly completely starve. TCP-AP achieves significantly better
fairness than TCP NewReno, although the available bandwidth is
not shared equally between both flows. This has mainly two
reasons. (1) The maximum achievable goodput in a chain
topology depends strongly on the number of hops, as previously
observed in Figure 14. The goodput decreases with increasing
number of hops. Thus, FTP 1 achieves more goodput than FTP 2.
(2) The TCP sender experiences more fluctuation of the RTT
samples due to multiple hidden terminals for longer chains. This
results in larger values for the coefficient of variation and reduces
the transmission rate. Since delaying ACKs reduces network

0

50

100

150

200

250

300

350

400

TCP-AP
Delayed ACK

TCP-APNewReno
Delayed ACK

NewReno

G
o
o
d

p
u

t
[K

b
it

/s
]

FTP 1
FTP 2

Aggregate Goodput

Figure 16: Goodput and fairness for the symmetric parallel

chain

0

0.5

1

1.5

2

0 20 40 60 80 100

C
o
e
ff

ic
ie

n
t

o
f

V
a
r
ia

ti
o
n

Simulation Time [s]

FTP 1
FTP 2

Figure 17: Transient fluctuation of the coefficient of variation

in TCP-AP

0

50

100

150

200

250

300

350

400

TCP-AP
De laye d ACK

TCP-APNe wRe no
De laye d ACK

Ne wRe no

G
o

o
d

p
u

t
[K

b
it

/s
]

FTP 1
FTP 2

Aggregate Goodput

Figure 18: Goodput and fairness in asymmetric parallel

chains topology

contention, the fluctuation of the RTT samples decreases for TCP-
AP with delayed ACK. As we can see in Figure 18, this leads to
improved bandwidth utilization for FTP 2, letting both FTP flows
achieve similar goodput. Considering the aggregate goodput, we
notice that the TCP NewReno variants achieve slightly more
aggregate goodput than TCP-AP. This is due to the known trade-
off between aggregate goodput and fairness caused by the absence
of optimal scheduling of the IEEE 802.11 MAC protocol. This
problem was discussed in [15] and [18], where [18] reported up to

42% less aggregate goodput for scenarios in which neighborhood
RED achieves optimal fairness.

5.1.4 Grid Topology
We consider a highly congested grid topology with six FTP flows
as shown in Figure 19. Figure 20 plots the goodput results for this
scenario. We observe that for TCP NewReno, FTP 1 and FTP 6
are basically the only active flows, causing an almost total
starvation of the remaining four flows. TCP NewReno with
delayed ACK improves the fairness slightly, though FTP 1 and
FTP 6 still obtain more than 12 times the goodput of the
remaining four flows. Opposed to TCP NewReno, TCP-AP
significantly improves fairness. In fact, TCP-AP lets FTP 1 and
FTP 6 sacrifice some of their goodput for the benefit of the
remaining flows. We notice that both FTP 1 and FTP 6 still get
higher goodput than the remaining flows, both for TCP-AP and
TCP-AP with delayed ACK. Such effect depends on the relative
position of the FTP flows within the grid. That is, FTP 1
experiences less contention than FTP 2 and FTP 3 due to its
relatively far position to the TCP senders of FTP 4 to FTP 6.
Thus, the probability that a packet of FTP 3 collides with packets
of FTP 4 to FTP 6 is higher than the probability that a packet of
FTP 1 collides with packets of FTP 4 to FTP 6. The same applies
to FTP 6, whose position corresponds to the position of FTP 1.
This leads to the intuition that FTP 2 and FTP 5 should achieve
more goodput than FTP 3 and FTP 4, respectively. However,
contrary to intuition, the simulation results show that FTP 2 and
FTP 5 achieve slightly less goodput than FTP 3 and FTP 4. This is
due to the fact that the nodes transferring FTP 2 receive all
RTS/CTS packets of the neighboring parallel chains transferring
FTP 1 and FTP 3. Note that the chain transferring FTP 1 is out of
the transmission range of nodes transferring FTP 3 and vice versa.
Thus, nodes transferring FTP 2 receive more RTS/CTS signals
from the neighboring chains than nodes transferring FTP 1 and
FTP 3, respectively. Hence, they throttle their transmission in
favor of the neighboring flows. In a symmetric grid scenario not
shown, where the relative positions are identical for each flow,
TCP-AP achieves perfect fairness between the competing flows.

5.1.5 Random Topology
In order to get intuition on the performance of the examined TCP
variants in more realistic scenarios, we consider a random
topology of 120 nodes uniformly distributed in an area A = 2500m
x 1000m. According to [3], in this setup, all nodes in the network
can communicate with each other over one or more hops with
probability P=99.9%. Thus, almost surely there exists at least one
path between any TCP sender/receiver pair. We choose ten TCP
sender/receiver pairs randomly from the set of nodes, each
running an FTP file transfer of unlimited size. Figure 21 plots
goodput results for this scenario. Consistent with the previous
results, we find that the fairness of TCP NewReno is very bad. In
fact, TCP NewReno lets five FTP flows almost completely starve,
while FTP 4 occupies most of the available bandwidth. TCP
NewReno with delayed ACK improves the aggregate goodput,
though FTP 4 still obtains most of the available bandwidth at cost
of the remaining flows. Opposed to the TCP NewReno variants,
TCP-AP achieves significantly better fairness between the FTP
flows, letting FTP 4 sacrifice a fraction of its goodput for the
benefit of the remaining flows. Particularly, none of the ten FTP
flows experiences starvation. The reason for the goodput
difference between FTP 4 and the remaining flows is that,

FTP1

FTP3

FTP2

FTP6FTP5FTP4

FTP1

FTP3

FTP2

FTP6FTP5FTP4

Figure 19: Grid topology

0

50

100

150

200

250

300

350

400

TCP-AP
Delayed ACK

TCP-APNewReno
Delayed ACK

NewReno

G
o
o
d

p
u

t
[K

b
it

/s
]

FTP 1
FTP 2
FTP 3

FTP 4
FTP 5
FTP 6

Aggregate Goodput

Figure 20: Goodput and fairness in grid topology

0

50

100

150

200

TCP-AP
Delayed ACK

TCP-APNewReno
Delayed ACK

NewReno

G
o
o
d

p
u

t
[K

b
it

/s
]

FTP 1
FTP 2
FTP 3
FTP 4

FTP 5
FTP 6
FTP 7
FTP 8

FTP 9
FTP 10

Aggregate Goodput

Figure 21: Goodput and fairness in random topology

opposed to the other FTP flows, the TCP entities of FTP 4 are
only two hops away from each other, which translates to a higher
available bandwidth for the flow, as already discussed in the
asymmetric parallel chain scenario. We further observe that TCP-
AP with delayed ACK results in even more goodput decrease for
FTP 4, and thus, achieves better fairness. This behavior is also
consistent with the results of the scenario with the asymmetric
parallel chains topology. Note that although TCP-AP achieves
considerably better fairness than TCP NewReno, it only sacrifices

6% aggregate goodput due to the trade-off between aggregate
goodput and fairness.

5.2 Data Transfer with Variable Length

Flows
In the second set of experiments, we consider variable length
flows, where the TCP sender transmits small files with variable
pause times between successive file transfers. Following [14], we
assume that the file sizes are Pareto distributed with mean 30

Kbytes and shape factor β = 1.5, whereas pause times between

successive file transfers are exponentially distributed.

5.2.1 Symmetric Parallel Chains Scenario
We re-iterate the scenario of the symmetric parallel chains used in
Section 5.1, though, we substitute the continuous FTP flows by
flows of variable length. In order to evaluate the impact of the
pause times on the performance of the examined TCP variants, we
vary the mean of the exponentially distributed pause times from
0.1 to 1 second. Additionally, we consider zero pause times.
Obviously, the goodput for zero pause time corresponds to the
results for continuous FTP flows shown in Figure 16. As
measures of interest, we consider the fairness index and the
achieved aggregate goodput averaged per flows. The latter
measure is given by the achieved averaged goodput summed up
for all flows. Note that we do not consider the pause times in the
calculation of the averaged goodput. That is, we determine the
amount of unique data received by the TCP receiver and divide it
by the actual time needed for transmitting this data.

In Figure 22 we observe that the aggregate averaged goodput of
TCP-AP increases with increasing mean for the pause times,
whereas the aggregate averaged goodput of TCP NewReno does
not change. This observation can be explained as follows: As the
pause times between file transfers increase, the probability that
both flows transmit packets simultaneously decreases. Thus, each
flow gets a higher chance for taking advantage of the entire
available bandwidth when the other flow is not transmitting.
Moreover, the probability for packet collisions also decreases for
increasing pause times. Since TCP-AP responds quickly to
changing traffic conditions such as the starting and ending of
other flows, it can take advantage of such pause times when the
other flow is idle, and thus, achieves more goodput. On the other
side, TCP NewReno does not take advantage of the pause times
since it cannot utilize the available bandwidth fast enough, as we
showed in Section 4.5. This effect even has a stronger impact
when transferring small files, as it is the case in this scenario,
since TCP should be able to utilize the available bandwidth
quickly in order to get benefit from the pause times, when the
other flow is idle.

Regarding fairness, we observe in Figure 23 that both TCP-AP
and TCP NewReno achieve near-optimal fairness for all non-zero
pause times. While this is a typical behavior for TCP-AP, it is
untypical for TCP NewReno. In fact, TCP NewReno achieves a
suboptimal fairness of about 0.64 for zero pause times. That is,
increasing the mean for the pause times increases the chance for a
starved flow to gain the entire bandwidth at the cost of the other
flow. Thus, both flows use the entire bandwidth almost alternating
which results in good fairness on average. However, opposed to

0

50

100

150

200

250

300

350

400

450

10.90.80.70.60.50.40.30.20.10

A
g
g
r
e
g
a
te

 A
v
e
r
a
g
e
d

 G
o
o
d

p
u

t
[K

b
it

/s
]

Mean for Exp. Distributed Pause Times [s]

TCP NewReno
TCP-AP

Figure 22: Aggregate averaged goodput of TCP NewReno and
TCP-AP vs. mean for pause times

1

0.9

0.8

0.7

0.6

0.5
10.90.80.70.60.50.40.30.20.10

F
a
ir

n
e
ss

 I
n

d
e
x

Mean for Exp. Distributed Pause Times [s]

TCP NewReno
TCP-AP

Figure 23: Fairness of TCP NewReno and TCP-AP vs. mean

for pause times

TCP NewReno, the fairness of TCP-AP is also optimal when both
flows transmit continuously without pause times. A further
simulation shows that applying delayed ACK for both TCP
NewReno and TCP-AP results in an increase in the aggregate
averaged goodput while providing the same qualitative results as
without delayed ACK.

5.2.2 Random Scenario
Once again, we consider a random scenario with the same settings
as in Section 5.1, except that we simulate five TCP flows with
variable length instead of ten continuous FTP flows. For this
scenario, we choose a fixed mean of 1 second for the
exponentially distributed pause times between successive file
transfers. Figure 24 shows the results for this simulation. We find
that the TCP-AP variants significantly outperform the NewReno
variants, both in terms of aggregate averaged goodput and
fairness. Specifically, TCP-AP achieves about 91% more
aggregate averaged goodput than TCP NewReno, while TCP-AP
with delayed ACK achieves about 58% more aggregate averaged
goodput than TCP NewReno with delayed ACK. Looking at the
averaged goodput of each flow, we observe that TCP-AP provides
better fairness among the flows than TCP NewReno. We also
notice that applying delayed ACK for both TCP NewReno and
TCP-AP results in an improvement both in terms of aggregate
averaged goodput and fairness.

0

50

100

150

200

250

TCP-AP
De laye d ACK

TCP-APNe wRe no
De laye d ACK

Ne wRe no

A
v

e
r

a
g

e
d

 G
o

o
d

p
u

t
[K

b
it

/s
]

HTTP 1
HTTP 2
HTTP 3

HTTP 4
HTTP 5

Aggregate Averaged Goodput

Figure 24: Averaged goodput and fairness in random topology

6. CONCLUSIONS
We proposed a novel congestion control algorithm for TCP over
multihop wireless networks denoted as TCP with Adaptive Pacing
(TCP-AP). TCP-AP implements rate-based scheduling within
TCP’s congestion window in order to avoid bursty packet
transmissions. The key feature of the proposed algorithm is the
quantification of incipient congestion by measuring the
fluctuation of round trip time samples using the coefficient of
variation. Based on this measure for contention on the network
path, as well as the estimation of 4-hop propagation delays, TCP-
AP adaptively calculates the appropriate rate for pacing the
transmission. Since TCP-AP relies solely on end-to-end
measurements of round trip times and requires no modifications
on the routing layer or the link layer, TCP-AP is easily
deployable.

In a comprehensive simulation study using ns-2 [8], we showed
that TCP-AP achieves up to 84% more goodput than TCP
NewReno and provides excellent fairness in almost all scenarios.
In particular, TCP-AP provides fair sharing of the available
bandwidth, even when competing flows are not within each
other’s transmission range, but within each other’s interference
range, since the proposed algorithm relies on the end-to-end
measurement of the interference experienced by a TCP
connection.

In future work, we are examining the performance of TCP-AP
over routing protocols, which use different routing metrics such as
energy efficiency or expected transmission count (ETX) [7].
Furthermore, we would like to implement TCP-AP for an IEEE
802.11 testbed in order to evaluate and optimize its performance
in real multihop wireless networks.

7. REFERENCES
[1] E. Altman and T. Jimenez, Novel Delayed ACK

Techniques for Improving TCP Performance in Multihop
Wireless Networks, Proc. Personal Wireless

Communications (PWC 03), Venice, Italy, 2003.

[2] A. Aggrawal, S. Savage, and T. Anderson, Understanding
the Performance of TCP Pacing, Proc. IEEE INFOCOM 00,
Tel Aviv, Israel, 2000.

[3] C. Bettstetter, On the Minimum Node Degree and
Connectivity of a Wireless Multihop Network, Proc. ACM

MobiHoc 02, Lausanne, Switzerland, 2002.

[4] R. Braden, Requirements for Internet Hosts -

Communication Layers, IETF RFC 1122, 1989.

[5] K. Chen, K. Nahrstedt, and N. Vaidya, The Utility of
Explicit Rate-Based Flow Control in Mobile Ad Hoc
Networks, Proc. IEEE Wireless Communications and

Networking Conference (WCNC 04), Atlanta, GA, 2004.

[6] K. Chen, Y. Xue, S. Shah, and K. Nahrstedt, Understanding
Bandwidth-Delay Product in Mobile Ad Hoc Networks,
Computer Communications Journal, 27, 923-934, 2004.

[7] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, A High-
Throughput Path Metric for Multi-Hop Wireless Routing,
Proc. ACM MOBICOM 03, San Diego CA, 2003.

[8] K. Fall and K. Varadhan (Ed.), The ns-2 Manual, Technical

Report, The VINT Project, UC Berkeley, LBL, and Xerox
PARC, 2003.

[9] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla,
The Impact of Multihop Wireless Channel on TCP
Throughput and Loss, Proc. IEEE INFOCOM 03, San
Francisco CA, 2003.

[10] I. A. Getting, The Global Positioning System, IEEE

Spectrum 30, December 1993.

[11] H. Holland and N. Vaidya, Analysis of TCP Performance
over Mobile Ad Hoc Networks, Proc. ACM MOBICOM 99,
Seattle, WA, 1999.

[12] V. Jacobson, Congestion Avoidance and Control, Proc.

ACM SIGCOMM 88, Stanford, CA, September, 1988.

[13] R. Jain, D. Chiu, and W. Hawe, A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in
Shared Systems, DEC Technical Report DEC-TR-301,
1984.

[14] Y. Joo, V. Ribeiro, A. Feldmann, A.C. Gilbert, and W.
Willinger, TCP Traffic Dynamics and Networks
Performance: A Lesson in Workload Modeling, Flow
Control, and Trace-driven Simulation, ACM SIGCOMM

Computer Communication Review, 31, 2001.

[15] H. Luo, S. Lu, and V. Bharghavan, A New Model for
Packet Scheduling in Multihop Wireless Networks, Proc.

ACM MOBICOM 00, Boston, MA, 2000.

[16] C. Perkins, E. Royer, and S. Das, Ad hoc On-Demand

Distance Vector (AODV) Routing, IETF RFC 3561, 2003.

[17] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R.
Sivakumar, ATP: A Reliable Transport Protocol for Ad Hoc
Networks, Proc. ACM MobiHoc, Annapolis, MA, 2003.

[18] K. Xu, M. Gerla, L. Qi, and Y. Shu, Enhancing TCP
Fairness in Ad Hoc Wireless Networks using Neighborhood
RED, Proc. ACM MOBICOM 03, San Diego CA, 2003.

[19] S. Xu and T. Saadawi, Performance Evaluation of TCP
Algorithms in Multi-Hop Wireless Packet Networks,
Wireless Communication and Mobile Computing, 2, 85-
100, 2002.

[20] X. Yu, Improving TCP Performance over Mobile Ad Hoc
Networks by Exploiting Cross-Layer Information
Awareness, Proc. ACM MOBICOM 04, Philadelphia, PA,
2004.

