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ABSTRACT 
In this paper, we introduce a novel congestion control algorithm 
for TCP over multihop IEEE 802.11 wireless networks 
implementing rate-based scheduling of transmissions within the 
TCP congestion window. We show how a TCP sender can adapt 
its transmission rate close to the optimum using an estimate of the 
current 4-hop propagation delay and the coefficient of variation of 
recently measured round-trip times. The novel TCP variant is 
denoted as TCP with Adaptive Pacing (TCP-AP). Opposed to 
previous proposals for improving TCP over multihop IEEE 
802.11 networks, TCP-AP retains the end-to-end semantics of 
TCP and does neither rely on modifications on the routing or the 
link layer nor requires cross-layer information from intermediate 
nodes along the path. A comprehensive simulation study using ns-
2 shows that TCP-AP achieves up to 84% more goodput than TCP 
NewReno, provides excellent fairness in almost all scenarios, and 
is highly responsive to changing traffic conditions. 

Categories and Subject Descriptors 
C.2.0 [Computer Communication Networks]: General – data 

communications.  

General Terms 
Algorithms, Design, Performance. 

Keywords 
Analysis and design of transport protocols, IEEE 802.11 wireless 
networks, End-to-end congestion control, Performance evaluation. 

1. INTRODUCTION 
Multihop wireless networks using IEEE 802.11 possess several 
properties, which are different to the wired Internet for which the 
widely deployed TCP NewReno implementation has been 
optimized. Opposed to wired networks, in IEEE 802.11 networks 
the wireless channel is a scarce resource shared among nodes 
within their radio range. Furthermore, channel capture, hidden and 
exposed terminal effects, and the IEEE 802.11 medium access 
control constitute features of wireless multihop networks not 
___________________ 
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present in a wired IP network. In fact, for multihop wireless 
networks, most losses experienced by TCP are due to packet drops 
at the link layer and not due to buffer overflow [9]. Furthermore, 
since the congestion control of TCP NewReno is based on lost 
data packets, the size of its congestion window is overshooting 
rather than proactively sense incipient congestion by monitoring 
the network traffic. Because of all these features, TCP NewReno 
possesses quite poor performance in multihop wireless networks, 
as well as exhibits severe unfairness among competing TCP 
flows. 

Improving the performance of reliable data transport in mobile ad 
hoc networks (MANET) by explicit rate control has been explored 
in several non-TCP protocols e.g., [5], [17]. Instead of sending 
new packets into the network only when old packets have been 
acknowledged, these approaches send packets at a pre-determined 
rate. TCP Pacing is a hybrid between a pure rate-based 
transmission control and TCP’s use of the congestion window to 
trigger new data packets to be sent into the network. Based on the 
intuition that bursty traffic produces higher queuing delays, more 
packet losses and lower goodput, smoothing the behavior of TCP 
traffic by pacing shall result in improved performance and 
fairness. 

Aggarwal, Savage, and Anderson presented a comprehensive 
evaluation of TCP with pacing for the Internet [2]. They 
considered an implementation of pacing based on a leaky bucket 
algorithm with evenly spaced timeouts. As duration of the 
timeouts they considered the ratio of the averaged measured round 
trip time and the current window size. Their study showed that 
contrary to intuition for the Internet, TCP Pacing often exhibits 
significantly less goodput than regular TCP. In fact, TCP Pacing 
exhibits worse performance than regular TCP for scenarios with 
large buffers due to delaying congestion signals of the network. 
On the other hand, pacing improves TCP fairness and packet drop 
rates when round trip times are highly variable as typical for 
multihop wireless networks.  

In this paper, we introduce a novel congestion control algorithm 
for TCP over multihop IEEE 802.11 networks implementing rate-
based scheduling of transmissions within the TCP congestion 
window. Rather than evenly spacing the transmissions of packets 
within the congestion window as proposed in [2], in our approach, 
a TCP sender adaptively sets its transmission rate using an 
estimate of the current 4-hop propagation delay and the coefficient 
of variation of recently measured round-trip times. The 4-hop 

propagation delay describes the time elapsed between 
transmitting a TCP packet by the TCP source node and receiving 
the packet at the node which lies 4 hops apart from the source 
node along the path to the destination. The novel TCP variant is 
denoted as TCP with Adaptive Pacing (TCP-AP). Opposed to 
previous proposals for improving TCP over multihop IEEE 
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802.11 networks, TCP-AP retains the end-to-end semantics of 
TCP and does neither rely on modifications on the routing or the 
link layer nor requires cross-layer information from intermediate 
nodes along the path. A comprehensive simulation study using ns-
2 [8] shows that TCP-AP achieves up to 84% more goodput than 
TCP NewReno, provides excellent fairness in almost all scenarios, 
and is highly responsive to changing network traffic conditions. In 
particular, TCP-AP provides fair sharing of the available 
bandwidth, even when competing flows are not within each 
other’s transmission range, but within each other’s interference 
range, since the proposed algorithm relies on the end-to-end 
measurement of the interference experienced by a TCP 
connection. 

The remainder of this paper is organized as follows. Section 2 
summarizes related work on TCP for multihop wireless networks 
and Section 3 describes the settings of the simulation environment 
used throughout this paper. In Section 4, we introduce the novel 
TCP congestion control algorithm. A comprehensive performance 
study of TCP-AP versus TCP NewReno with and without 
dynamically delaying acknowledgements is presented in Section 
5. Finally, concluding remarks are given. 

2. RELATED WORK 
Fu et al. [9] pointed out the hidden terminal problem in wireless 
multihop networks and experimentally showed that for a chain 
topology the optimal windows size, for which TCP achieves best 
throughput, is roughly given by 1/4 of the hop count of the path. 
Furthermore, they proposed two enhancements on the link layer: 
adaptive pacing to distribute traffic on the link layer among 
intermediate nodes in a more balanced way and link layer RED to 
throttle TCP senders when incipient congestion is detected. Using 
simulation, they showed that depending on the scenario, these link 
layer enhancements improve TCP goodput by 5% to 30% due to 
better spatial reuse. Xu et al. [18] proposed the neighborhood 
RED (NRED) scheme on routing layer to throttle TCP senders 
when incipient congestion is detected, by purposely dropping TCP 
packets on intermediate nodes. Nodes forming a neighborhood 
manage a virtual distributed queue in order to coordinate the 
packet drops of individual nodes. Using simulation, the authors 
showed that NRED could substantially improve fairness in 
multihop wireless networks.  

Our approach differs fundamentally from [9], [18]. TCP-AP just 
requires slight modifications on the transport layer and does 
neither require modifications on the routing layer as [18] and link 
layer as [9], nor extra communication between neighboring nodes. 
As a consequence, TCP-AP can be incrementally deployed. 
Furthermore, TCP-AP integrally improves both fairness and 
goodput without provoking packet losses.  

Sundaresam et al. [17] and Chen et al. [5] introduced two new 
special-purpose transport protocols for multihop wireless 
networks. Both protocols employ pure rate-based transmission of 
packets, where the transmission rate is determined using feedback 
from intermediate nodes along the path. In [17], the authors 
propose to dynamically adjust the transmission rate according to 
the maximum packet queuing delay on intermediate nodes along 
the network path. Chen et al. [5] also proposed an explicit rate-
based flow control scheme for multihop wireless network. Using 
cross-layer information from both the MAC and the routing layer, 
the sending rate of a flow is conveyed from intermediate nodes 

along the path in special control headers attached to each data 
packet.  

In contrast to [5], [17], TCP-AP retains the end-to-end semantics 
of TCP without relying on any cross-layer information from 
intermediate nodes along the path. As a consequence, TCP-AP 
can be incrementally deployed, since TCP-AP is not only TCP-
friendly, but also TCP compatible.  

Altman and Jiménez [1] proposed a dynamic scheme for delaying 
ACKs in order to improve TCP throughput in multihop wireless 
networks. Using simulation, they showed that for an h-hop chain, 
delaying ACKs yields around 50% more throughput for TCP 
NewReno. Building upon their results, we are also considering 
dynamically delaying ACK, though, not only for TCP NewReno, 
but also for TCP-AP. Furthermore, we evaluate the dynamic 
delayed ACK scheme for a comprehensive set of network 
topologies rather than just for an h-hop chain.  

Several authors introduced TCP enhancements for coping with 
mobility in ad hoc wireless networks over IEEE 802.11. Holland 
and Vaidya [11] introduced explicit link failure notification 
(ELFN) as a feedback mechanism from the network in order to 
help TCP distinguish congestion losses and losses induced by link 
failures. Yu [20] proposed two cross-layer communication 
mechanisms that further improve TCP performance in case of 
packet losses due to mobility. We focus on TCP performance and 
fairness in static wireless networks instead, though, our results 
may well be utilized together with their findings in order to adapt 
TCP-AP for mobile wireless multihop networks. 

3. SIMULATION ENVIRONMENT 
We conduct simulation experiments using the network simulator 
ns-2 [8]. All MAC layer parameters of IEEE 802.11 are 
configured to provide a transmission range of 250m and a carrier 
sensing range as well as an interference range of 550m. Thus, our 
setting is consistent with real wireless networks, in which the 
transmission range of a node is typically smaller than its 
interference range. The transmission of each data packet on the 
MAC layer is preceded by a Request-To-Send/Clear-To-Send 
(RTS/CTS) handshake. We consider a channel bandwidth of 2 
Mbit/s and set the size of TCP and UDP data packets to 1460 
bytes. For all nodes, we assume a buffer size of 50 packets. Unless 
otherwise stated, in all considered topologies, each node is 200 
meters apart of each of its adjacent nodes. As ad hoc routing 
protocol we choose AODV [16].  

In order to isolate the IEEE 802.11 MAC-induced deficiencies of 
TCP in multihop wireless networks we only consider static 
scenarios throughout this paper. Note that route failures do not 
only occur in mobile, but also in static scenarios due to the 
interaction between the MAC and the routing layers in case of 
congestion [19]. Thus, we conjecture that in scenarios with low 
mobility (e.g. pedestrian speed), the performance of TCP-AP is 
similar to the performance in static scenarios. 

In all experiments, except for experiments showing transient 
behavior, we conduct steady-state simulations starting with an 
initially idle system. In each run, we simulate either TCP or UDP 
connections, dependent on the scenario, until 55.000 packets are 
successfully transmitted, and split the simulation output in 11 
batches of size 5.000 packets. The first batch is discarded as initial 
transient. The considered performance measures are derived from 



 

the remaining 10 batches with 95% confidence intervals by the 
batch means method. 

4. RATE BASED CONGESTION CONTROL 

FOR TCP 

4.1 Motivation 
Several researchers identified the interaction of TCP with the 
underlying routing and MAC layers as key factor for the poor 
performance of TCP in IEEE 802.11 multihop wireless networks. 
If we neglect mobility-related problems of TCP in such networks, 
most important deficiencies of TCP arise from TCP’s congestion 
control algorithm. First, TCP’s window-based congestion control 
leads to packet bursts when received acknowledgments trigger the 
transmission of several data packets, e.g., when receiving a 
cumulative ACK. Due to the spatial reuse constraint of the 
wireless channel in IEEE 802.11 multihop wireless networks, 
neighboring nodes cannot transmit simultaneously. Thus, packet 
bursts result in increased contention on the wireless channel. This 
link layer contention may lead to packet drops due to the hidden 
and exposed terminal problems [18]. Second, TCP’s congestion 
control algorithm relies on packet losses as indication of 
congestion and, thus, provokes losses in order to identify spare 
bandwidth. In IEEE 802.11 multihop wireless networks, this 
behavior results in increased congestion, causing significant 
performance degradation for TCP [9]. Recall that network 
congestion often triggers (false) route failures, even in static 
wireless networks, since the routing protocol cannot distinguish 
between a packet loss due to congestion and a packet loss due to a 
broken route [19].  

To overcome both deficiencies stated above while preserving TCP 
compatibility, we propose to incorporate a rate-based transmission 
algorithm into TCP’s window-based congestion control. Our 
approach is denoted as TCP with Adaptive Pacing (TCP-AP). The 
problem of packet bursts is solved by spreading the transmission 
of successive data packets according to the computed transmission 
rate, which accounts for the spatial reuse constraint in IEEE 
802.11 multihop wireless networks. Furthermore, by proactively 
identifying incipient congestion, i.e. before congestion-related 
losses actually occur, TCP-AP is able to adjust the transmission 
rate and, hence, reduce contention on the MAC layer. In contrast 
to TCP Pacing for the Internet [2], where the transmission of a 
window of packets is evenly spread over the duration of a round 
trip time (RTT), our approach schedules the transmission of 
packets based on both the size of the congestion window and the 
computed transmission rate. As long as the size of the congestion 
window is larger than the number of packets in flight, new packets 
are scheduled for transmission according to the current 
transmission rate.  

4.2 Identification of Incipient Congestion 
Due to its end-to-end semantics, TCP’s congestion control 
algorithm is based on the measurement of round trip times and 
packet losses. In fact, in current TCP variants such as Reno and 
NewReno, the actual identification of congestion is solely laid 
upon the observation of packet losses. Therefore, TCP increases 
the load issued into the network until a packet loss is detected, 
where such packet loss identifies congestion. Note that although 
TCP Vegas uses RTT measurements in addition to packet losses 
to identify congestion, it still suffers from bursty packet 
transmissions in wireless multihop networks. 

Considering the characteristics of IEEE 802.11 multihop 
networks, it becomes obvious that a transport protocol which 
actually provokes packet drops to get network feedback has to 
suffer from poor performance. Thus, our goal is to develop a 
congestion control algorithm that identifies high contention on the 
network path of the TCP connection and proactively throttles the 
transmission rate before losses occur. In order to retain the end-to-
end semantics of TCP, such congestion control algorithm requires 
a measure obtainable at the TCP entities, which quantifies the 
degree of contention on the network path. We propose the 
coefficient of variation of recently measured round trip times, 
covRTT, as key measure for the degree of the contention on the 
network path. This measure is given by: 
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Here, N is the number of considered RTT samples, RTT  is the 
mean of the samples, and RTTi denotes the value of the i-th RTT 
sample.  

To justify the applicability of the coefficient of variation covRTT as 
an appropriate measure for identifying contention, we analyze the 
influence of network contention on the development of the RTT 
samples. Using simulation, we observe that the fluctuation of the 
RTT samples, which can be quantified by covRTT, provides a 
reliable measure for the degree of contention. As first basic 
topology, we consider a cross scenario of two chains, each of five 
nodes, as illustrated in Figure 1. On the horizontal chain, a TCP 
connection with a fixed transmission rate of 100 KBit/s is used to 
measure the RTT samples at the TCP sender. On the vertical 
chain, a UDP connection with varying transmission rates produces 
background traffic. The background traffic starts at time T1=30s 
and stops at time T2=60s. Figures 3 to 5 show the influence of the 
background traffic on the RTT samples of the TCP connection. 
The left graph of each figure plots the measured RTT samples of 
the TCP connection for background traffic of 150 KBit/s, 200 
KBit/s, and 250 KBit/s, respectively. The right graph shows the 
corresponding coefficient of variation covRTT. Note that the 
available bandwidth in this topology lies above 300 KBit/s. 
Although the offered load of both traffic sources is far below the 
available bandwidth in Figure 3, the TCP connection experiences 
significant fluctuation in the RTT samples when its flow competes 
for the shared channel with the UDP background flow. With 
increasing background traffic, we observe increasing fluctuation 
in the measured RTT samples, as shown in Figures 4 and 5.  

As a second basic topology, we consider two parallel chains with 
a distance of 400m as shown in Figure 2. Consistent with the cross 
topology, we regard a TCP flow with fixed rate on one chain and 
a variable-rate UDP flow on the other chain. Note that since both  
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Figure 3: Influence of UDP background traffic with 150 KBit/s on RTT samples 
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Figure 4: Influence of UDP background traffic with 200 KBit/s on RTT samples 
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Figure 5: Influence of UDP background traffic with 250 KBit/s on RTT samples

chains lie within each other’s interference range, they compete for 
the same wireless medium. However, no scheduling can be 
achieved on the MAC layer, since both chains are placed beyond 
each other’s transmission range. That is, nodes belonging to one 
chain cannot hear the RTS-CTS sequence transmitted by nodes 
belonging to the other chain. Simulation results obtained for this 
topology are consistent with the results of the cross scenario. Due 
to space limitations, we omit the corresponding curves. Since a 
larger number of scenarios comprise of the cross and the parallel 
chain topology as basic building blocks, we conjecture that the 
coefficient of variation covRTT is an appropriate measure for 
identifying contention in multihop wireless networks. This 
conjecture is experimentally verified in Section 5 for a wide range 
of scenarios. Recall that the measure covRTT can be obtained 
without provoking congestion or packet losses. 

4.3 The Spatial Reuse Constraint 
Besides the measure of contention on the network path, the 
derivation of an appropriate transmission rate should also account 
for the spatial reuse constraint of IEEE 802.11 multihop wireless 
networks. That is, due to the hidden terminal effect, in a chain 
topology where the transmission range of each node is about 
250m and the interference and carrier sensing ranges are 550m, a 
TCP sender at node i can only transmit a packet successfully as 
soon as node (i+3) has finished its transmission. We refer to the 
time elapsed between transmitting a TCP packet by node i and 
receiving the packet at node (i+4) as the 4-hop propagation delay 

(FHD). 

We recall the spatial reuse constraint of IEEE 802.11 multihop 
networks, which is reported in previous studies such as [9], by 
considering the static chain topology depicted in Figure 6 where 
the inter-node distance is 200m. Assume that node 1 wishes to  
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Figure 6: A chain of nodes showing the hidden terminal effect 

transmit data to node 2 and node 4 wishes to transmit data to node 
5. In this topology, node 4 is a hidden terminal for the 
transmission from node 1 to node 2. That is, node 4 can neither 
receive the RTS/CTS handshake between node 1 and node 2 nor 
sense the data transmission from node 1 to node 2, since node 1 is 
out of the sensing range of node 4. Thus, node 4 may transmit to 
node 5 while node 1 is transmitting to node 2. This causes a 
collision at the receiving node 2, since node 2 is within the 
interference range of node 4. 

Note that such hidden terminal effects depend mainly on the 
characteristics of the network interface as well as the adopted 
routing protocol. First, the network interface determines the ratio 
between the transmission range and the interference range. Due to 
the settings of the network interface considered in this paper, 
hidden terminals along the path can be avoided if a transmitting 
node delays the transmission of a data packet until the previously 
sent packet is forwarded 4 times. Thus, we consider FHD for the 
calculation of the transmission rate.  

Second, the adopted routing protocol determines the length of the 
route in terms of hop count, depending on the employed routing 
metrics. In this paper, we consider routing protocols which aim to 
minimize the hop count of the route such as AODV [16]. For this 
class of routing protocols the node density does not affect the 
choice of FHD as the key factor of the spatial reuse constraint. To 
illustrate this independence, we consider the simple chain 
topology depicted in Figure 7(a). The figure shows the process of 
route determination between source node 1 and destination node 8 
in a chain topology with different inter-node distances. A potential 
route, which may be built by AODV is given by the nodes 1-3-6-
8. Since the remaining nodes are not part of the route, they do not 
contribute to the spatial reuse constraint factor. Thus, the node 
density in a given network is irrelevant for FHD after the route 
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Figure 7: Example of a route determination with different 
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Table 1: Parameters for the adaptive computation 

of the transmission rate 

Parameter Meaning 

h Number of hops from sender to receiver 

b Bandwidth of the wireless interface 

tq Average packet queuing delay per node 

sdata Size of TCP data packet 

sACK Size of TCP ACK packet 

tdata Transmission time for TCP data packet 

tACK Transmission time for TCP ACK packet 

RTT Current round trip time of TCP packets 

covRTT Coefficient of variation of RTT samples 

FHD Current sample of 4-hop propagation delay 

�FHD  EWMA of 4-hop propagation delay 
 

has been established. The logical topology, which is actually used 
by the routing protocol, is depicted in Figure 7(b).  

Note that, since we derive FHD from the measured round trip 
times of the TCP packets (RTT), our approach may be arbitrarily 
adjusted to estimate propagation delays for other number of hops 
(i.e. n-hop delay), e.g. in order to adapt to different settings of the 
network interface as well as different routing protocols.  

If we assume a network with perfect scheduling on the MAC 
layer, the maximum spatial reuse with minimum collisions can be 
achieved with a transmission rate Rmax=1/FHD. In fact, this 
transmission rate reflects the upper bound of the bandwidth-delay 
product for IEEE 802.11 multihop wireless networks. Following 
[6], an upper bound for the capacity of a path with h hops in an 
IEEE 802.11 multihop wireless network is given by h/4 packets. 
Let Tone-way denote the time a packet travels from the sender to the 
receiver. This quantity can be computed as 

/ 4
one way

T FHD h− = ⋅ . Subsequently, the number of packets in 

flight on the way from the TCP sender to the TCP receiver with a 
sender’s transmission rate of Rmax, is given by:  

 max

1
# packets in flight

4
one way

R T h−= ⋅ =  

Thus, the number of packets in flight transmitted with the 
maximum transmission rate Rmax reflects the maximum capacity 
of the network path. Note that for network paths with h < 4, Rmax 
is computed using the h-hop propagation delay instead of the 4-
hop propagation delay. Without loss of generality and for ease of 

exposition, we only consider network paths with h ≥ 4 in the 
subsequent discussion. 

In order to use Rmax as an upper bound for the transmission rate, 
we need to measure the 4-hop propagation delay FHD of the TCP 
data packets. Since the end-to-end semantics of TCP does not 
allow using information available on intermediate nodes, we 
estimate FHD based on RTT measurements at the TCP sender. 
Our estimation algorithm is based on two assumptions: (1) 
Contention on the path from the sender to the receiver is similar to 
the contention on the backward path and (2) transmission delays 
of packets (not including queuing delays) are proportional to the 
size of the packets. The first assumption is reasonable, since in 
most MANET routing protocols network paths are bidirectional, 
i.e., the forward and the backward paths are the same. Even when 



 

the forward and backward paths are different, it is most likely that 
both paths lie within each other’s interference range and do not 
allow concurrent transmissions. Assumption (2) results from the 
medium access method used in IEEE 802.11, which allows the 
exclusive transmission at a fixed bandwidth (e.g., 2 Mbit/s) once 
the sender has acquired the channel.  

The RTT is composed of the sum of the delay experienced by the 
data packet on the way from the sender to the receiver and the 
delay experienced by the ACK packet sent from the receiver to the 
sender. Each of these delays comprise of the time to forward the 
packet over h hops, where each forwarding requires a queuing 
delay tq and transmission delays tdata, and tACK, respectively. The 
parameters involved in the estimation of the 4-hop propagation 
delay are given in Table 1. Using the measured RTT, we can 
write: 

 ( ) ( )q data q ACK
RTT h t t h t t= + + +  

Solving for tq while using tdata = sdata/b and tACK = sACK/b, we 
derive the average queuing delay as:  

 
1

2

data ACK

q

s sRTT
t

h b

+ 
= − 

 
 

Subsequently, we can estimate the 4-hop propagation delay of the 
TCP data packet:  

 4 2data data ACK

q

s s sRTT
FHD t

b h b

−   
= + = +   

   
 

Note that this estimation requires that the TCP sender knows 
about the number of hops on the network path to the receiver and 
the bandwidth of the wireless network interface. Since this 
information is available on the routing and MAC layers at the 
source node, no extra overhead is required. A more accurate 
estimation of the 4-hop propagation delay may be achieved if the 
clocks of both TCP entities are synchronized. If available, this 
clock synchronization can be obtained using the Global 
Positioning System (GPS) [10]. In Section 5.1, we discuss how 
synchronized clocks affect the performance of TCP-AP.  

4.4 The Adaptive Pacing Scheme 
Since the computation of the adaptive transmission rate should 
account for both the current contention on the network path and 
the spatial reuse constraint, we incorporate covRTT and FHD in the 
transmission rate formula. Recall that a rate of Rmax=1/FHD 
specifies an upper bound for the achievable goodput under 
optimal conditions, i.e. with perfect scheduling and no contention. 
In order to adaptively throttle the transmission rate R according to 
the current degree of contention, we use covRTT as additional 
decay factor: 
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(1 2 )RTT

R
FHD cov

=
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The coefficient of variation quantifies the percentage of sample 
deviation from the mean. However, since we want to quantify the 
size of the spectrum in which the samples fluctuate around the 
mean, we double the value covRTT in the rate formula. 

Note that in favor of a stable transmission rate, we have to 
average the measured 4-hop propagation delay samples and  
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Figure 8: Congestion control of TCP-AP 

employ a reasonable history size N for the computation of the 
coefficient of variation. Recall from Section 4.2 that N denotes the 
number of the most recent samples used for determining covRTT. 
For averaging the 4-hop propagation delay samples, we use the 
exponentially weighted moving average (EWMA) with averaging 

weight α.  

That is: 

 
� � (1 )new oldFHD FHD FHDα α= ⋅ + − ⋅

 
Putting it together, the algorithm given in Figure 8 specifies the 
proposed rate-based congestion control executed at the TCP 
sender. Note that we preserve the retransmission strategy of 
regular TCP for handling packet losses.  

We would like to point out that the computational cost for 
deriving covRTT could be optimized in a deployed implementation 
of TCP-AP. In particular, the standard deviation could be 
approximated by the mean absolute deviation without requiring 
the calculation of a square root as proposed in [12] for quantifying 
the variability of RTT’s. 

Obviously, there is a trade-off between the stability of the 
transmission rate and the responsiveness of the algorithm. This 

trade-off is controlled by the weight α and the history size N. In 
the following, we experimentally derive appropriate values for 
these two parameters. 

4.5 Parameter Tuning and Responsiveness  
As responsiveness we denote how quickly the congestion control 
algorithm adapts to changing network conditions such as 
additional flows competing for the bandwidth. We analyze the 

impact of the averaging weight α and the history size N on 
goodput, fairness and responsiveness of TCP-AP. Obviously, the 

responsiveness of TCP-AP improves for smaller values of α and  
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Figure 9: Aggregate goodput for different parameter settings 

in the cross topology 
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Figure 10: Responsiveness of TCP-AP 
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Figure 11: Responsiveness of TCP NewReno 
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Figure 12: Responsiveness of TCP NewReno with optimal 

CWL 

N, since the most recently measured RTT samples gain more 
influence on the computed transmission rate. However, we 
observe that an appropriate value of N has a more significant 

influence on responsiveness than α. This can be attributed to the 
fact that in the computation of covRTT, the mean is determined 
using a simple moving average. Since the last measured sample 
has only a weight of 1/N, the average value cannot respond as 
quickly to changing conditions as an EWMA with small 
averaging weight.  

To find a parameter set which provides good performance in 
terms of goodput and fairness while achieving appropriate 
responsiveness, we conduct a simulation study using the cross 
topology of Figure 1. In this scenario, we define two TCP-AP 
flows instead of one fixed rate TCP and one UDP flow. Figure 9 
plots the aggregate goodput, i.e. the sum of the goodput achieved 

by both flows for different values of α and N. We find that the 

highest aggregate goodput is achieved for large values of α and N. 
For history sizes of 50 or more samples, the aggregate goodput 

increases slightly with increasing α. However, for a history size of 
10 samples, the aggregate goodput decreases with increasing 
averaging weight. As a reasonable parameter set, which provides 
good responsiveness by using a possibly small history size, 

combined with adequate goodput, we choose N=50 and α=0.7. 
This parameter set achieves a superior compromise between 
responsiveness and goodput not only in the cross topology but 
also in the symmetric parallel chains topology depicted in Figure 
2. Due to space limitations, we omit the corresponding curve. 

We evaluate the fairness achieved by our approach for the 
different parameter sets by computing Jain’s fairness index [13], 
which is defined as: 

 

2

2

1 1

( )
n n

i i

i i

F x x n x
= =

 
=  
 
∑ ∑ , 

where n is the number of flows and xi denotes the goodput 
achieved by flow i.  

For all parameter sets, TCP-AP achieves a fairness index of more 
than 0.99. Thus, our approach perfectly shares the available 
bandwidth upon the two competing flows.  

To illustrate the transient behavior of TCP-AP compared to TCP 
NewReno, Figures 10 to 12 plot the goodput versus time for the 
cross topology. For this simulation set, the first TCP flow runs 
from the beginning until T2=60s and the second TCP flow starts at 
T1=30s and runs until the end of the simulation. Figure 10 shows 
that TCP-AP responds quickly to changing network conditions 
when new flows start (T1) as well as when flows stop (T2). Using 
TCP-AP, both flows utilize the available bandwidth when there 
are no competing flows and share the bandwidth fairly when 
multiple flows compete for the bandwidth. As already observed in 
previous work (e.g. [9], [18]), TCP NewReno suffers from serious 
unfairness. From Figure 11, which shows the goodput of two TCP 
NewReno flows over time, we observe that the first flow occupies 
almost the entire bandwidth during its lifetime, even after the 
second flow starts. Thus, the second flow experiences multiple 
timeouts and increases the retransmission timeout (RTO). Such 
large retransmission timeouts lead to underutilization of the 
available bandwidth when the first flow ends at T2. We further 
observe that, opposed to TCP-AP, the goodput of TCP NewReno 
fluctuates strongly over time. This is due to the inappropriate  
 



 

  

Figure 13: 7-hop chain topology with a single flow 

strategy of TCP NewReno for adjusting its congestion window, 
which results in overshooting the optimal window size rather than 
smoothly sensing the available bandwidth. 

Similar unfairness can be observed in Figure 12 for TCP with 
fixed congestion window limit (CWL), as proposed in [6]. Here, 
the congestion window is limited to the optimal value for this 
topology, namely one for a 4-hop chain. We find that the first 
TCP flow achieves near-optimal goodput during its lifetime but 
does not share the bandwidth with the newly started second flow 
at T1. Due to the same reasons as for TCP NewReno, the second 
flow does not utilize the spare bandwidth, which becomes 
available when the first flow stops. 

4.6 Competing TCP-AP and TCP NewReno 

Flows 
Since TCP-AP applies rate-based transmission only within the 
TCP congestion window, the number of packets in flight can 
never exceed what the window allows. Consequently, TCP-AP is 
TCP-friendly by definition, since TCP-AP cannot transmit at a 
rate higher than a standard TCP connection operating along the 
same path would achieve. On the other side, in multihop wireless 
networks in which a TCP-AP flow competes with a TCP 
NewReno flow, it is obvious that the TCP NewReno flow will 
obtain most of the available bandwidth due to its aggressive 
window control. However, as observed in Figure 11, this is a 
typical behavior of TCP NewReno, even when competing with 
other TCP NewReno flows. In fact, the aggressive behavior of 
TCP NewReno would result in the occupancy of most of the 
available bandwidth when competing with any transport protocol 
implementing proactive congestion control.  

Other approaches such as the neighborhood RED scheme [18], 
which force TCP NewReno to decrease its aggressive 
transmission by purposely dropping packets on intermediate 
nodes may yield improved fairness in multihop wireless networks 
with mixed TCP flows. Since the deficiencies of TCP NewReno 
for multihop wireless networks are well known, such interactions 
between NewReno and non-NewReno TCP variants play for 
multihop wireless networks a less significant role than in the 
Internet. 
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Figure 14: TCP goodput without global knowledge 

5. COMPARATIVE PERFORMANCE  

STUDY 
To illustrate the effectiveness of TCP-AP, we present a 
comprehensive performance study of TCP-AP versus TCP 
NewReno with and without dynamic delayed ACK [1]. The 
dynamic delayed ACK approach extends the basic delayed ACK 
option for TCP [4] by dynamically setting the parameter d which 
represents the number of packets received by the TCP receiver 
before an acknowledgment is generated. The parameter d 
gradually increases from one to four based on the sequence 
numbers of the received TCP packets. Although the delayed ACK 
option decreases the frequency of RTT samples measurable by the 
TCP sender, this reduction of feedback has no significant impact 
on the effectiveness of the adaptive pacing scheme in TCP-AP.  

5.1 FTP-Like Data Transfer 
In the first set of experiments, we consider scenarios with FTP-
like data transfer in different network topologies. That is, the TCP 
sender transmits packets continuously, representing a large file 
transfer.  

5.1.1 Chain Topology 
As a first scenario, we consider an equally spaced chain 
comprising of h+1 nodes (h hops) with a single flow as depicted 
in Figure 13. TCP packets travel along the chain from the leftmost 
node (i.e., the sender) to the rightmost node (i.e., the receiver). 
Figure 14 plots the goodput of the examined TCP variants for 
varying hop number. We observe that TCP-AP outperforms TCP 
NewReno for all hops by up to 84%. In fact, TCP-AP even 
outperforms TCP NewReno with delayed ACK for h > 8, whereas 
TCP-AP with delayed ACK achieves 7% to 17% more goodput 
than TCP-AP.  

In order to determine the optimum goodput achievable in an h-hop 
chain, we conduct a further experiment, in which the examined 
TCP variants are provided with global knowledge. That is, we 
utilize synchronized clocks for both TCP sender and receiver for 
TCP-AP to determine more accurate estimates of the 4-hop 
delays. For TCP NewReno, we set the optimal congestion window 
limit size (CWL) for each number of hops according to [6]. We 
compare these TCP variants to a paced UDP flow with an 
optimized transmission rate for each number of hops. Similar to 
TCP, the UDP packet size is set to 1460 bytes, whereas the 
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Figure 15: TCP goodput with global knowledge 



 

overhead caused by TCP packet retransmissions and 
acknowledgments is neglected. We use paced UDP as an upper 
bound for the highest goodput achievable in such scenario. Figure 
15 shows that TCP-AP with synchronized clocks achieves up to 
27% more goodput than TCP NewReno with optimal CWL, 
whereas applying delayed ACK yields 9% to 36% further 
improvement for TCP-AP. In fact, TCP-AP with delayed ACK 
achieves only 5% to 16% less goodput than the simulative upper 
bound given by paced UDP. Note that delayed ACK cannot be 
applied for TCP NewReno with optimal CWL. This is because for 
h ≤ 10, CWL is less than four, and thus, smaller than the 
parameter d used for delayed ACK. Therefore, the TCP receiver 
would experience a lack of TCP packets and time out each time 
the TCP sender transmits a total of CWL packets, causing severe 
goodput decrease. 

5.1.2 Symmetric Parallel Chains Topology 
In this scenario, we use the symmetric parallel chains topology 
illustrated in Figure 2, where we consider one TCP flow for each 
chain. Figure 16 plots the goodput achieved by the two individual 
flows as well as the aggregate goodput for both flows. We find 
that for TCP NewReno, the first flow utilizes most of the available 
bandwidth at the cost of starving the second flow. In fact, we 
notice that the second flow only achieves about 10% of the overall 
goodput. TCP NewReno with delayed ACK improves the goodput 
of both flows, though, the fairness remains insufficient. Opposed 
to TCP NewReno, TCP-AP with and without delayed ACK 
achieve optimal fairness. In fact, TCP-AP even achieves a better 
utilization of the available bandwidth, obtaining more aggregate 
goodput than TCP NewReno. This is because TCP-AP minimizes 
both inter-node and inter-chain contention by adapting its 
transmission rate according to the fluctuation of the RTT samples. 
Figure 17 shows the coefficient of variation of TCP-AP for both 
FTP flows. We notice that it fluctuates within the same range for 
both flows, namely between zero and one, according to the level 
of network contention at a specific time. Note that mechanisms 
that require a direct communication between nodes in order to 
improve TCP fairness would not yield any gain in scenarios like 
the symmetric parallel chains topology. This is because the 
distance between the chains does not allow inter-chain 
communication. 

5.1.3 Asymmetric Parallel Chains Topology 
To evaluate the impact of the chain length on TCP fairness, we 
consider an asymmetric parallel chains topology. Extending the 
topology in Figure 2, we expand the upper chain by three hops in 
each direction. Figure 18 plots the goodput results for this 
scenario. We observe that for both TCP NewReno and TCP 
NewReno with delayed ACK, FTP 1 running over the shorter 
chain obtains almost all of the available bandwidth, letting FTP 2 
nearly completely starve. TCP-AP achieves significantly better 
fairness than TCP NewReno, although the available bandwidth is 
not shared equally between both flows. This has mainly two 
reasons. (1) The maximum achievable goodput in a chain 
topology depends strongly on the number of hops, as previously 
observed in Figure 14. The goodput decreases with increasing 
number of hops. Thus, FTP 1 achieves more goodput than FTP 2. 
(2) The TCP sender experiences more fluctuation of the RTT 
samples due to multiple hidden terminals for longer chains. This 
results in larger values for the coefficient of variation and reduces 
the transmission rate. Since delaying ACKs reduces network  
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Figure 16: Goodput and fairness for the symmetric parallel 

chain 
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Figure 17: Transient fluctuation of the coefficient of variation 

in TCP-AP 
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Figure 18: Goodput and fairness in asymmetric parallel 

chains topology 

contention, the fluctuation of the RTT samples decreases for TCP-
AP with delayed ACK. As we can see in Figure 18, this leads to 
improved bandwidth utilization for FTP 2, letting both FTP flows 
achieve similar goodput. Considering the aggregate goodput, we 
notice that the TCP NewReno variants achieve slightly more 
aggregate goodput than TCP-AP. This is due to the known trade-
off between aggregate goodput and fairness caused by the absence 
of optimal scheduling of the IEEE 802.11 MAC protocol. This 
problem was discussed in [15] and [18], where [18] reported up to 



 

42% less aggregate goodput for scenarios in which neighborhood 
RED achieves optimal fairness.  

5.1.4 Grid Topology 
We consider a highly congested grid topology with six FTP flows 
as shown in Figure 19. Figure 20 plots the goodput results for this 
scenario. We observe that for TCP NewReno, FTP 1 and FTP 6 
are basically the only active flows, causing an almost total 
starvation of the remaining four flows. TCP NewReno with 
delayed ACK improves the fairness slightly, though FTP 1 and 
FTP 6 still obtain more than 12 times the goodput of the 
remaining four flows. Opposed to TCP NewReno, TCP-AP 
significantly improves fairness. In fact, TCP-AP lets FTP 1 and 
FTP 6 sacrifice some of their goodput for the benefit of the 
remaining flows. We notice that both FTP 1 and FTP 6 still get 
higher goodput than the remaining flows, both for TCP-AP and 
TCP-AP with delayed ACK. Such effect depends on the relative 
position of the FTP flows within the grid. That is, FTP 1 
experiences less contention than FTP 2 and FTP 3 due to its 
relatively far position to the TCP senders of FTP 4 to FTP 6. 
Thus, the probability that a packet of FTP 3 collides with packets 
of FTP 4 to FTP 6 is higher than the probability that a packet of 
FTP 1 collides with packets of FTP 4 to FTP 6. The same applies 
to FTP 6, whose position corresponds to the position of FTP 1. 
This leads to the intuition that FTP 2 and FTP 5 should achieve 
more goodput than FTP 3 and FTP 4, respectively. However, 
contrary to intuition, the simulation results show that FTP 2 and 
FTP 5 achieve slightly less goodput than FTP 3 and FTP 4. This is 
due to the fact that the nodes transferring FTP 2 receive all 
RTS/CTS packets of the neighboring parallel chains transferring 
FTP 1 and FTP 3. Note that the chain transferring FTP 1 is out of 
the transmission range of nodes transferring FTP 3 and vice versa. 
Thus, nodes transferring FTP 2 receive more RTS/CTS signals 
from the neighboring chains than nodes transferring FTP 1 and 
FTP 3, respectively. Hence, they throttle their transmission in 
favor of the neighboring flows. In a symmetric grid scenario not 
shown, where the relative positions are identical for each flow, 
TCP-AP achieves perfect fairness between the competing flows.  

5.1.5 Random Topology 
In order to get intuition on the performance of the examined TCP 
variants in more realistic scenarios, we consider a random 
topology of 120 nodes uniformly distributed in an area A = 2500m 
x 1000m. According to [3], in this setup, all nodes in the network 
can communicate with each other over one or more hops with 
probability P=99.9%. Thus, almost surely there exists at least one 
path between any TCP sender/receiver pair. We choose ten TCP 
sender/receiver pairs randomly from the set of nodes, each 
running an FTP file transfer of unlimited size. Figure 21 plots 
goodput results for this scenario. Consistent with the previous 
results, we find that the fairness of TCP NewReno is very bad. In 
fact, TCP NewReno lets five FTP flows almost completely starve, 
while FTP 4 occupies most of the available bandwidth. TCP 
NewReno with delayed ACK improves the aggregate goodput, 
though FTP 4 still obtains most of the available bandwidth at cost 
of the remaining flows. Opposed to the TCP NewReno variants, 
TCP-AP achieves significantly better fairness between the FTP 
flows, letting FTP 4 sacrifice a fraction of its goodput for the 
benefit of the remaining flows. Particularly, none of the ten FTP 
flows experiences starvation. The reason for the goodput 
difference between FTP 4 and the remaining flows is that,  
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Figure 19: Grid topology 
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Figure 20: Goodput and fairness in grid topology 

0

50

100

150

200

TCP-AP 
Delayed ACK

TCP-APNewReno 
Delayed ACK

NewReno

G
o
o
d

p
u

t 
[K

b
it

/s
]

FTP 1
FTP 2
FTP 3
FTP 4

FTP 5
FTP 6
FTP 7
FTP 8

FTP 9
FTP 10

Aggregate Goodput

 

Figure 21: Goodput and fairness in random topology 

opposed to the other FTP flows, the TCP entities of FTP 4 are 
only two hops away from each other, which translates to a higher 
available bandwidth for the flow, as already discussed in the 
asymmetric parallel chain scenario. We further observe that TCP-
AP with delayed ACK results in even more goodput decrease for 
FTP 4, and thus, achieves better fairness. This behavior is also 
consistent with the results of the scenario with the asymmetric 
parallel chains topology. Note that although TCP-AP achieves 
considerably better fairness than TCP NewReno, it only sacrifices 



 

6% aggregate goodput due to the trade-off between aggregate 
goodput and fairness. 

5.2 Data Transfer with Variable Length 

Flows 
In the second set of experiments, we consider variable length 
flows, where the TCP sender transmits small files with variable 
pause times between successive file transfers. Following [14], we 
assume that the file sizes are Pareto distributed with mean 30 

Kbytes and shape factor β = 1.5, whereas pause times between 

successive file transfers are exponentially distributed.  

5.2.1 Symmetric Parallel Chains Scenario 
We re-iterate the scenario of the symmetric parallel chains used in 
Section 5.1, though, we substitute the continuous FTP flows by 
flows of variable length. In order to evaluate the impact of the 
pause times on the performance of the examined TCP variants, we 
vary the mean of the exponentially distributed pause times from 
0.1 to 1 second. Additionally, we consider zero pause times. 
Obviously, the goodput for zero pause time corresponds to the 
results for continuous FTP flows shown in Figure 16. As 
measures of interest, we consider the fairness index and the 
achieved aggregate goodput averaged per flows. The latter 
measure is given by the achieved averaged goodput summed up 
for all flows. Note that we do not consider the pause times in the 
calculation of the averaged goodput. That is, we determine the 
amount of unique data received by the TCP receiver and divide it 
by the actual time needed for transmitting this data.  

In Figure 22 we observe that the aggregate averaged goodput of 
TCP-AP increases with increasing mean for the pause times, 
whereas the aggregate averaged goodput of TCP NewReno does 
not change. This observation can be explained as follows: As the 
pause times between file transfers increase, the probability that 
both flows transmit packets simultaneously decreases. Thus, each 
flow gets a higher chance for taking advantage of the entire 
available bandwidth when the other flow is not transmitting. 
Moreover, the probability for packet collisions also decreases for 
increasing pause times. Since TCP-AP responds quickly to 
changing traffic conditions such as the starting and ending of 
other flows, it can take advantage of such pause times when the 
other flow is idle, and thus, achieves more goodput. On the other 
side, TCP NewReno does not take advantage of the pause times 
since it cannot utilize the available bandwidth fast enough, as we 
showed in Section 4.5. This effect even has a stronger impact 
when transferring small files, as it is the case in this scenario, 
since TCP should be able to utilize the available bandwidth 
quickly in order to get benefit from the pause times, when the 
other flow is idle.  

Regarding fairness, we observe in Figure 23 that both TCP-AP 
and TCP NewReno achieve near-optimal fairness for all non-zero 
pause times. While this is a typical behavior for TCP-AP, it is 
untypical for TCP NewReno. In fact, TCP NewReno achieves a 
suboptimal fairness of about 0.64 for zero pause times. That is, 
increasing the mean for the pause times increases the chance for a 
starved flow to gain the entire bandwidth at the cost of the other 
flow. Thus, both flows use the entire bandwidth almost alternating 
which results in good fairness on average. However, opposed to  
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Figure 22: Aggregate averaged goodput of TCP NewReno and 
TCP-AP vs. mean for pause times 
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Figure 23: Fairness of TCP NewReno and TCP-AP vs. mean 

for pause times 

TCP NewReno, the fairness of TCP-AP is also optimal when both 
flows transmit continuously without pause times. A further 
simulation shows that applying delayed ACK for both TCP 
NewReno and TCP-AP results in an increase in the aggregate 
averaged goodput while providing the same qualitative results as 
without delayed ACK. 

5.2.2 Random Scenario 
Once again, we consider a random scenario with the same settings 
as in Section 5.1, except that we simulate five TCP flows with 
variable length instead of ten continuous FTP flows. For this 
scenario, we choose a fixed mean of 1 second for the 
exponentially distributed pause times between successive file 
transfers. Figure 24 shows the results for this simulation. We find 
that the TCP-AP variants significantly outperform the NewReno 
variants, both in terms of aggregate averaged goodput and 
fairness. Specifically, TCP-AP achieves about 91% more 
aggregate averaged goodput than TCP NewReno, while TCP-AP 
with delayed ACK achieves about 58% more aggregate averaged 
goodput than TCP NewReno with delayed ACK. Looking at the 
averaged goodput of each flow, we observe that TCP-AP provides 
better fairness among the flows than TCP NewReno. We also 
notice that applying delayed ACK for both TCP NewReno and 
TCP-AP results in an improvement both in terms of aggregate 
averaged goodput and fairness.  
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Figure 24: Averaged goodput and fairness in random topology 

6. CONCLUSIONS 
We proposed a novel congestion control algorithm for TCP over 
multihop wireless networks denoted as TCP with Adaptive Pacing 
(TCP-AP). TCP-AP implements rate-based scheduling within 
TCP’s congestion window in order to avoid bursty packet 
transmissions. The key feature of the proposed algorithm is the 
quantification of incipient congestion by measuring the 
fluctuation of round trip time samples using the coefficient of 
variation. Based on this measure for contention on the network 
path, as well as the estimation of 4-hop propagation delays, TCP-
AP adaptively calculates the appropriate rate for pacing the 
transmission. Since TCP-AP relies solely on end-to-end 
measurements of round trip times and requires no modifications 
on the routing layer or the link layer, TCP-AP is easily 
deployable. 

In a comprehensive simulation study using ns-2 [8], we showed 
that TCP-AP achieves up to 84% more goodput than TCP 
NewReno and provides excellent fairness in almost all scenarios. 
In particular, TCP-AP provides fair sharing of the available 
bandwidth, even when competing flows are not within each 
other’s transmission range, but within each other’s interference 
range, since the proposed algorithm relies on the end-to-end 
measurement of the interference experienced by a TCP 
connection. 

In future work, we are examining the performance of TCP-AP 
over routing protocols, which use different routing metrics such as 
energy efficiency or expected transmission count (ETX) [7]. 
Furthermore, we would like to implement TCP-AP for an IEEE 
802.11 testbed in order to evaluate and optimize its performance 
in real multihop wireless networks. 
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