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Abstract—We introduce and evaluate a feasible end-to-end conges-
tion control algorithm for overcoming the severe deficiencies of 
TCP in IEEE 802.11 multihop wireless networks. Our approach, 
which we denote as TCP with Adaptive Pacing, implements rate-
based scheduling of transmissions within the TCP congestion win-
dow. The TCP source adaptively sets its transmission rate using an 
estimate of the current out-of-interference delay and the coefficient 
of variation of recently measured round-trip times. TCP-AP retains 
the end-to-end semantics of TCP and does neither rely on modifica-
tions at the routing or the link layer, nor requires cross-layer infor-
mation from intermediate nodes along the path. Opposed to pre-
vious proposals that build on network simulators, we implement and 
evaluate our approach in a real wireless mesh testbed comprising 20 
nodes. In a comprehensive comparative performance study using 
our testbed we show that, depending on the current network state 
and traffic patterns, TCP-AP achieves up to ten times more goodput 
than TCP NewReno, provides excellent fairness, and is highly res-
ponsive to changing network traffic conditions. 
 

Index Terms— Analysis and design of transport protocols, end-
to-end congestion control, IEEE 802.11 wireless mesh testbeds, 
performance evaluation. 

I. INTRODUCTION 
For several years now, multihop wireless networks have been 

within the focus of research in the networking community. While 
most of the research in this area is still conducted in network si-
mulators such as [12] and [27], the trend is increasingly moving 
towards deploying such networks in reality. Examples include 
MIT Roofnet [3], TFA-Rice ([4], [14]), All-wireless Office [11], 
and Freifunk [26], which have proven the feasibility of multihop 
wireless networks. 

Within several research topics in multihop wireless networks, 
TCP performance has acquired great attention. Multihop wireless 
networks using IEEE 802.11 namely possess several properties, 
which are different to the wired Internet for which the widely 
deployed TCP NewReno implementation has been optimized. 
Opposed to wired networks, in IEEE 802.11 networks, the wire-
less channel is a scarce resource shared among nodes within their 
radio range. Furthermore, channel capture, hidden and exposed 

terminal effects, and the IEEE 802.11 medium access control 
constitute features of multihop wireless networks not present in a 
wired IP network. In fact, for multihop wireless networks, most 
losses experienced by TCP are due to packet drops at link layer 
and not due to buffer overflow [13]. Furthermore, since the con-
gestion control of TCP NewReno is based on lost data packets, 
the size of its congestion window is overshooting rather than 
proactively sensing incipient congestion by monitoring the net-
work traffic. Because of all these features, TCP NewReno pos-
sesses quite poor performance in multihop wireless networks, as 
well as exhibits severe unfairness among competing TCP flows. 

Several approaches (e.g. [10], [13], [22] and [24]) have been 
proposed for improving TCP performance in multihop wireless 
networks. Unfortunately, such approaches have been only de-
signed and evaluated in network simulators. Simulators often rely 
on optimistic assumptions compared to the real world and, thus, 
do not always deliver accurate results. Moreover, many physical 
measures in reality, such as the distance between nodes in a net-
work, can be simply inquired in simulations, but are not available 
at nodes in reality due to the absence of global knowledge.  

For the best of our knowledge, we are the first to introduce and 
evaluate a feasible, and TCP-compatible, end-to-end approach for 
improving TCP goodput and fairness in a real wireless mesh 
testbed rather than in simulators. We build on previous work [10] 
and introduce a novel congestion control algorithm for TCP over 
real multihop IEEE 802.11 networks, implementing rate-based 
scheduling of transmissions within the TCP congestion window. 
In our approach, a TCP sender adaptively sets its transmission rate 
using an estimate of the current out-of-interference delay and the 
coefficient of variation of recently measured round-trip times. The 
out-of-interference delay describes the time elapsed between 
transmitting a TCP packet by the TCP source node i and receiving 
the packet at the node which lies beyond the range in which colli-
sions with node i may occur. The novel TCP variant, which is 
fully TCP-compatible, is denoted as TCP with Adaptive Pacing 
(TCP-AP). We incorporate an advanced end-to-end algorithm in 
TCP-AP, which estimates the current out-of-interference delay 
and derives a suitable adaptive pacing rate accordingly.  

Opposed to previous proposals for improving TCP over multi-
hop IEEE 802.11 networks, TCP-AP retains the end-to-end se-
mantics of TCP and does neither rely on modifications at the 
routing or the link layer nor requires cross-layer information from 
intermediate nodes along the path. In order to evaluate the per-
formance of TCP-AP versus the widely deployed TCP NewReno, 
we build a miniaturized wireless mesh testbed comprising 20 
nodes and variable signal attenuators. A comprehensive perfor-
mance study using the miniaturized wireless mesh testbed shows 
that, depending on the current network state and traffic patterns, 
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TCP-AP achieves up to ten times more goodput than TCP Ne-
wReno, provides excellent fairness, and is highly responsive to 
changing network traffic conditions. 

The remainder of this paper is organized as follows. Section II 
summarizes related work on TCP for multihop wireless networks 
and Section III describes the miniaturized wireless mesh testbed 
used for evaluating our approach. In Section IV, we introduce the 
novel TCP congestion control algorithm and describe its imple-
mentation in the Linux operating system. A comprehensive per-
formance study of TCP-AP versus TCP NewReno using our wire-
less mesh testbed is presented in Section V. Finally, concluding 
remarks are given. 

II. RELATED WORK 
Wei et al. [23] and ElRakabawy et al. [10] showed that pacing 

for TCP can improve goodput and fairness both for wired as well 
as for multihop wireless networks. The authors in [23] found out 
that pacing yields reduced burstiness of traffic, increased syn-
chronization among flows as well as fragmented SACK blocks in 
a flow. Although the authors point out to a possible decrease in 
performance when competing with aggressive flows, they con-
clude that pacing brings significant benefits for many applica-
tions. In [10], we introduced a preliminary version of TCP with 
Adaptive Pacing and evaluated it using ns-2 [12]. The results 
showed that adaptive pacing yields significant performance im-
provement with respect to standard TCP. 

As opposed to [23], our approach is tailored for multihop wire-
less networks and not for the Internet, which possesses fundamen-
tally different characteristics. We build our approach on [10]. 
Since the algorithm in [10] is optimized for simulations, we intro-
duce an improved algorithm which exploits end-to-end informa-
tion to derive a suitable adaptive pacing rate. Furthermore, we 
evaluate our approach in a real mesh testbed rather than in simula-
tions. 

Fu et al. [13] pointed out the hidden terminal problem in multi-
hop wireless networks and experimentally showed that for a chain 
topology the optimal windows size, for which TCP achieves best 
throughput, is roughly given by 1/4 of the hop count of the path. 
Xu et al. [24] proposed the neighborhood RED (NRED) scheme 
at routing layer to throttle TCP senders when incipient congestion 
is detected, by purposely dropping TCP packets at intermediate 
nodes. In [20], Nahm et al. analyzed the performance of TCP in 
multihop wireless networks by investigating the interaction of 
TCP with the routing and link layers. They proposed a fractional 
window increment scheme to prevent TCP's congestion window 
from overshooting to improve goodput. 

Our approach differs fundamentally from [13], [20], and [24]. 
TCP-AP just requires slight modifications at the transport layer 
and does neither require modifications at the routing layer as [24] 
and link layer as [13], nor extra communication between neigh-
boring nodes. As a consequence, TCP-AP can be incrementally 
deployed. Furthermore, beyond [20], TCP-AP integrally improves 
both fairness and goodput. 

Sundaresam et al. [22] introduced ATP, and Anastasi et al. 
proposed TPA [1], which are both novel transport protocols for 
multihop wireless networks. ATP employs pure rate-based trans-
mission of packets, where the transmission rate is determined 

using feedback from intermediate nodes along the path. The au-
thors propose to dynamically adjust the transmission rate accord-
ing to the maximum packet queuing delay on intermediate nodes 
along the network path. TPA uses a similar congestion control 
algorithm like TCP, in such that packets are transmitted window-
based. By limiting the congestion window size and thinning the 
ACK stream using delayed ACK mechanisms, a less aggressive 
data transfer is achieved. 

In contrast to [22], TCP-AP retains the end-to-end semantics of 
TCP without relying on any cross-layer information from inter-
mediate nodes along the path. Furthermore, opposed to [1] and 
[22], TCP-AP is fully TCP compatible and thus can be incremen-
tally deployed.  

Opposed to [13], [22] and [24], our approach is tailored and 
evaluated in a real mesh testbed rather than simulations. This 
makes our approach feasible and improves the reliability of the 
acquired results. 

Several studies proposed clamping the TCP congestion win-
dow in order to reduce packet bursts from congesting the wireless 
channel. Casetti et al. proposed Westwood+ [5], a sender-side 
modification of TCP's congestion control algorithm over lossy 
wireless links. Westwood+ monitors the arrival rate of TCP 
ACKs and adjusts the congestion window and slow start threshold 
accordingly. In [19], Kawadia et al. investigated the performance 
of TCP in an indoor testbed consisting of 7 off-the-shelf laptops. 
Consistent with [13], the authors found out that clamping the size 
of the congestion window can improve TCP throughput in multi-
hop wireless networks. Koutsonikolas et al. reported similar re-
sults in [9], where they investigated the impact of the congestion 
window size on TCP throughput. In [2], the authors provided a 
receiver-side control algorithm denoted as CLAMP to control the 
TCP receiver's advertised window limit. They showed that 
CLAMP can provide a fairer allocation of the bandwidth than 
TCP NewReno. 

In contrast to [5], [9], and [19], we do not only address TCP 
throughput maximization, but also fairness between competing 
flows. While Westwood+ [5] and CLAMP [2] are mainly tailored 
for one-hop wireless communication with lossy links, TCP-AP 
addresses the specific problems of TCP over IEEE 802.11 multi-
hop networks, e.g. hidden terminal effects. Clamping the window 
size like in [9] and [19] does not adapt the transmission rate of 
TCP according to the current network state, but rather sets an up-
per bound for the congestion window. Such an upper bound does 
not prevent packet bursts from being transmitted back-to-back, 
which is the main reason for the unfairness problem of TCP in 
multihop networks. 

III. THE MINIATURIZED WIRELESS MESH TESTBED 
To study the performance of the enhanced TCP-AP algorithm 

in reality and compare it to the widely deployed TCP NewReno, 
we built up a miniaturized wireless mesh testbed. The testbed, 
which is depicted in Fig. 1, comprises 20 wireless mesh nodes. 
Each node consists of a low-cost PC with an Intel Celeron 3.2 
GHz processor and an IEEE 802.11b wireless PCI card, which is 
connected to a variable signal attenuator and a 2.1dBi low-gain 
antenna. Using the variable attenuators, the signal power of the 
wireless PCI cards can be adaptively shrunk in order to limit the  



  

 
Fig. 1: Miniaturized Wireless Mesh Testbed 

TABLE I: HARDWARE AND SOFTWARE COMPONENTS OF THE  
MINIATURIZED TESTBED 

Hardware 

Component Description 
PC Siemens ESPRIMO P2510 Celeron 3,2 GHz, 

512 Mbytes RAM, 80 Gbyte HDD 
Wireless NIC Netgear IEEE 802.11b wireless PCI card 

WG311T with Atheros chipset 
Variable attenuator Broadwave 751-002-030 variable attenuator, 

attenuation range 0-30dB in 1 dB steps 
Coaxial cable 7m aircell5 coaxial-cable, 50 Ohm with SMA / 

RPSMA connectors, attenuation: -0.53 dB/m 
Antenna Maldol mini 2.1 dBi antenna with magnetic 

mount and 3m SMA cable 
Software 

Component Description 
Operating System SuSE Linux 10.2 with custom kernel version 

2.6.18 with high resolution subsystem patch 
Wireless NIC driver Madwifi Linux kernel device driver for Atheros 

chipsets version 0.9.2 
Multihop routing 
protocol 

OLSR for Linux version 0.4.10 with ETX sup-
port 

maximum transmission range of each node. Thus, similar to [8], 
large wireless mesh networks spanning a few kilometers can be 
scaled down to a few meters, making quick topology and parame-
ter modifications for efficient evaluation of network protocols 
possible. 

Testbed nodes run a SuSE Linux 10.2 operating system with a 
custom-compiled kernel version 2.6.18 with the high-resolution 
timer subsystem patch [15]. As driver for the wireless PCI cards, 
we employ the Linux Madwifi kernel device driver version 0.9.2 
for Atheros chipsets. We employ the Optimized Link State 
Routing Protocol (OLSR) version 0.4.10 for Linux [6] [25] for 
multihop routing, which incorporates the ETX metric [7] for se-
lecting routes based on the current loss probability of the links. 

All wireless nodes further possess a Gigabit Ethernet NIC 
which are connected to the subnet of the department through a 
Gigabit switch. This allows a remote management of the wireless 
nodes from any wired host in the subnet. Hence, wireless experi-
ments can be started and stopped from a remote computer and 
traces can be copied and evaluated through the wired network. 
Table I shows a detailed description of hardware and software 
components of the miniaturized testbed. 

IV. PUTTING TCP-AP INTO PRACTICE 
A Discrepancy between Simulation and Reality 

Simulation is still the most common way for designing and 
evaluating new protocols for research in multihop wireless net-
works. Due to the higher complexity and expenses of real multi-
hop wireless networks, many researchers choose to implement 
and evaluate newly designed protocols in simulators such as ns-2 
[12] and Qualnet [27]. However, simulators often rely on optimis-
tic assumptions compared to the real world and, thus, do not al-
ways deliver accurate results. Moreover, many physical measures 
in reality, such as the distance between nodes in a network, can be 
simply inquired in simulations, but are not available at nodes in 
reality due to the absence of global knowledge. Thus, previous 
approaches such as [10], [13] and [22], which rely on such meas-
ures in order to be feasible, cannot be simply deployed in real 
multihop wireless networks. 

The current adaptive pacing approach, as given in [10], is op-
timized for a specific, simulation-based ratio between the trans-
mission range and carrier sensing/interference range of the nodes. 
Specifically, the 4-hop propagation delay [10] [13] only corres-
ponds to a ratio between the transmission range and the carrier 
sensing/interference range which is equal to 250m/550m. In real 
life, such ranges strongly depend on a number of variable physical 
parameters such as current transmission power and channel inter-
ference, and thus typically fluctuate over time. Consequently, in a 
real multihop wireless environment, the suitable number of hops 
required as a delay for the adaptive pacing rate is variable and is 
not bound to a specific number, such as 4, as given in [10] and 
[13]. In fact, the suitable propagation delay required by TCP to 
consider the spatial reuse constraint of IEEE 802.11, which we 
denote as out-of-interference delay (OID), changes over time de-
pending on current network conditions. Thus, the main challenge 
for adopting the adaptive pacing approach in [10] into practice is 
to develop an algorithm for adaptively determining the out-of-
interference delay. The complexity lies in the fact that, other than 
in simulation, parameters needed for determining such delay can-
not be simply inquired by the TCP source node. Instead, the delay 
must be approximated by means of measures which are available 
at the TCP source node.  

Subsequently, we discuss the main deficiencies of standard 
TCP variants in multihop wireless networks and how our ap-
proach overcomes such deficiencies. Furthermore, we give insight 
into the interaction between the carrier sensing range and hidden 
terminals in a chain of nodes. We show how to exploit informa-
tion about the carrier sensing range to derive a suitable estimation 
of the out-of-interference delay and how to use such a delay for a 
computation of an enhanced adaptive pacing rate. 
B Rate-based Congestion Control 

Several researchers identified the interaction of TCP with the 
underlying routing and link layers as the key factor for the poor 
performance of TCP in IEEE 802.11 multihop wireless networks. 
If we neglect mobility-related problems of TCP in such networks 
[16], most important deficiencies of TCP arise from TCP’s con-
gestion control algorithm. First, TCP’s window-based congestion 
control leads to packet bursts when received acknowledgments 
trigger the transmission of several data packets, e.g., when receiv-



  

ing a cumulative ACK. Due to the spatial reuse constraint of the 
wireless channel in IEEE 802.11 multihop wireless networks, 
concurrent nodes in a chain cannot transmit simultaneously with-
out causing collisions. Thus, packet bursts result in increased con-
tention on the wireless channel. This link layer contention may 
lead to packet drops due to the hidden and exposed terminal prob-
lems [10] [13]. Second, TCP’s congestion control algorithm relies 
on packet losses as indication of congestion and, thus, provokes 
losses in order to identify spare bandwidth. In IEEE 802.11 multi-
hop wireless networks, this behavior results in increased conges-
tion, causing significant performance degradation for TCP [13]. 
Recall that network congestion often triggers (false) route failures, 
even in static wireless networks, since the routing protocol cannot 
distinguish between a packet loss due to congestion and a packet 
loss due to a broken route. 

To overcome both deficiencies stated above while preserving 
the TCP compatibility, our protocol TCP-AP incorporates a rate-
based transmission algorithm into TCP’s window-based conges-
tion control. The problem of packet bursts is solved by spreading 
the transmission of successive data packets according to the com-
puted transmission rate, which accounts for the spatial reuse con-
straint in IEEE 802.11 multihop wireless networks. Furthermore, 
by proactively identifying incipient congestion, i.e. before conges-
tion-related losses actually occur, TCP-AP is able to adjust the 
transmission rate and, hence, reduce contention at link layer. In 
contrast to TCP Pacing for the Internet [23], where the transmis-
sion of a window of packets is evenly spread over the duration of 
a round trip time (RTT), our approach schedules the transmission 
of packets based on both the size of the congestion window and 
the computed transmission rate. As long as the size of the conges-
tion window is larger than the number of packets in flight, new 
packets are scheduled for transmission according to the current 
transmission rate. 

C Identification of Incipient Congestion 
Due to its end-to-end semantics, TCP’s congestion control al-

gorithm is based on the measurement of round trip times (RTT) 
and packet loss. In fact, in current TCP variants such as Reno and 
NewReno, the actual identification of congestion is solely laid 
upon the observation of packet loss. Therefore, standard TCP 
increases the load issued into the network until a packet loss is 
detected, where such a packet loss identifies congestion. 

TCP-AP incorporates a congestion control algorithm which 
identifies high contention on the network path of the TCP connec-
tion, and proactively throttles the transmission rate before losses 
occur. That is, as congestion increases, the variance of round trip 
times increases correspondently, indicating high link contention. 
Hence, TCP-AP uses the coefficient of variation of recently 
measured round trip times, covRTT, as key measure for the degree 
of the contention on the network path. This measure is given by: 
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Here, N is the number of considered RTT samples, RTT  is the 
mean of the samples, and RTTi denotes the value of the i-th RTT 

sample. The coefficient of variation covRTT can be obtained purely 
end-to-end without provoking congestion or packet losses. 

D The Spatial Reuse Constraint 
Besides the measure of contention on the network path, TCP-

AP also accounts for the spatial reuse constraint of IEEE 802.11 
multihop wireless networks. That is, due to the hidden terminal 
effect and the absence of perfect scheduling at link layer, concur-
rent nodes in a chain cannot transmit simultaneously without 
causing collisions. A crucial factor that has a significant impact on 
the spatial reuse constraint of a multihop wireless network is the 
carrier sensing range of wireless nodes. Physical carrier sensing is 
a mechanism incorporated in IEEE 802.11 [28], by which a wire-
less node senses the medium before it transmits a packet. Only if 
the sensed signal power is below a certain threshold, denoted as 
carrier sense threshold Tcs , does the node initiate a transmission. 
As the radio signal of a node attenuates with the distance, the 
range in which the node can sense the transmission of another 
node is limited. The carrier sensing range defines the range in 
which the current transmission of a node can be sensed by other 
nodes. The key role of the carrier sensing range lies in determin-
ing which hops on a chain of nodes are prone to be potential hid-
den terminals. That is, nodes which operate beyond each other's 
carrier sensing range on a chain comprise mutual hidden termin-
als. Thus, the transmission of each of the nodes cannot be sensed 
by the other node, respectively, resulting increased collision at 
link layer. Fig. 2 shows a chain of 8 nodes. Assume a TCP con-
nection is running between node 1 as a TCP source and node 8 as 
a TCP destination. In this chain, nodes 1 and 4 comprise mutual 
hidden terminals, since both nodes operate beyond each other's 
carrier sensing ranges. In this case, node 4 cannot sense the 
transmission from node 1 to node 2 and thus may transmit packets 
to node 5, resulting collisions with the ongoing transmission be-
tween nodes 1 and 2. 

From the point of view of the TCP source, i.e. node 1, the first 
node which is positioned right at the border of its carrier sensing 
range, node 4 in this case, is the first node that comprises a poten-
tial hidden terminal. This means that collisions can be avoided if 
node 1 defers its transmission until node 4 finishes its transmis-
sion to node 5. Note that which node comprises the hidden ter-
minal is mainly determined by the carrier sensing range and does 
not have to be the 4th node on the chain as given in Fig. 2. This 
means that the hidden terminal varies with varying carrier sensing 
range. Let node i be the TCP source node and node (i+x), x ≥ 2, be 
the hidden terminal to node i. We refer to the time elapsed be-
tween transmitting a TCP packet by the TCP source node i and 
receiving the packet at node (i+x+1) as the out-of-interference 
delay (OID). 
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Fig. 2: Spatial reuse constraint: Hidden terminals in a chain are depen-

dent on current carrier sensing range 



  

The challenge is to approximate OID by determining the hid-
den terminal for the TCP source node. In order to identify the 
hidden terminal for the TCP source node, we have to determine 
the carrier sensing range in terms of number of hops. The next 
node right at the border of the carrier sensing range comprises the 
potential hidden terminal. Subsequently, we introduce the Adap-
tive Out-of-Interference Delay approach, which incorporates an 
effective way for estimating the carrier sensing range of the TCP 
source node and approximating the out-of-interference delay ac-
cordingly. 

E The Adaptive Out-of-Interference Delay Approach 
The main challenge in approximating the carrier sensing range 

of the TCP source node lies in the lack of fundamental informa-
tion such as transmission range and distances between nodes. 
Such information can be easily inquired in simulations, but are 
very hard, sometimes even impossible, to determine in real life. 
As we set the preservation of the end-to-end semantics of TCP as 
a strict design goal, we introduce an approach for approximating 
the carrier sensing range purely end-to-end without any support 
from intermediate nodes. All parameters needed for estimating the 
carrier sensing range are available at the TCP source node and can 
be inquired from the IEEE 802.11 driver. 

We approximate the carrier sensing range in terms of number 
of hops, not in meters, by estimating how many hops it takes for 
the transmission signal of the TCP source node to get attenuated 
such that it falls below the carrier sensing threshold Tcs. That is, 
the first hop that comes after the threshold Tcs is undercut is a po-
tential hidden terminal for the TCP source node.  

The first step towards estimating the carrier sensing range in 
terms of number of hops is to estimate the signal attenuation for 
the first hop on the path from TCP source to TCP destination. Let 
Pout be the actual outgoing signal power of the TCP source node. 
Following the Equivalent Isotropically Radiated Power (EIRP) 
[21] equation we get: 

out tx ant cab vP P G A A= + − −  (2) 

where Ptx denotes the transmission power of the wireless NIC 
at the source node, Gant denotes the signal gain of the mini anten-
na, and Acab and Av describe the signal attenuation caused by the 
coaxial cable and the variable attenuator, respectively. The para-
meters Acab and Av only correspond to the deployed testbed and 
are set to zero if no cables and/or no hardware attenuators are used 
in the multihop wireless network. The signal attenuation for the 
first hop, L1, is given by the difference between the received pow-
er Prx at the second node in the chain and the outgoing signal 
power from the TCP source node, i.e. first node in the chain, Pout: 
                              1 out rxL P P= −  (3) 

The received power Prx can be easily inquired from the IEEE 
802.11 driver at the source node using the Received Signal 
Strength Indication mechanism (RSSI) [28]. The next step is to 
derive an equation for estimating the signal attenuation for an 
arbitrary number of hops, n. Such an equation shall approximate 
the signal attenuation of the TCP source node at nodes which are 
n hops away from the source node. The signal attenuation equa-
tion as described by the ITU-R indoor propagation model [21] is 

given by 
                           10 1020 log ( ) 10 log ( )cL f p d= +  (4) 
where fc denotes the frequency of the transmitted signal, i.e. a 
channel in the 2.4 GHz band in our case, p denotes the path loss 
exponent, and d describes the distance between transmitter and 
receiver in meters. The path loss exponent p depends on the oper-
ating environment of the wireless nodes and ranges from 2 for 
propagation in free space up to 5 in dense indoor environments. 
Due to findings from extensive measurements in our testbed and 
following [21], we set p = 3. 

Let d1 be the distance of the first hop in the chain, i.e. between 
the TCP source node and the second node, then we get according 
to Eq. 4: 
                            1 10 10 120 log ( ) 10 log ( )cL f p d= +  (5) 

It holds that 11

n
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= +∑ , where d determines the deviation 
between the distance d1n and the actual distance of the first n 
hops. For the signal attenuation of the TCP source node after n 
hops, Ln, we get: 
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where ε describes the approximation error, which is determined 

by d. Since ε is a logarithmic factor, its ratio to the overall attenua-
tion Ln diminishes with increasing distance.  

Nevertheless, in a real large-scale mesh network, 1

n
ii

d
=∑ may 

well be determined more accurately, either by deploying localiza-
tion techniques in IEEE 802.11 [28], or by using GPS localiza-
tion. In case such localization information are available at the 
TCP source, an even more accurate approximation of Ln may be 
achieved. 

Finally, we can derive the carrier sensing range Hcs in terms of 
number of hops for an h-hop chain: 
        { }min | {1,2,..., }cs out k csH k k h P L T= ∈ ∧ − <  (7) 

In other words, Hcs is the smallest number of hops k for which 
the actually sensed power of the TCP source node (i.e. Pout - Lk) is 
below the carrier sensing threshold Tcs. This implies that (Hcs + 1) 
is the first node in the chain which cannot sense the transmission 
of the TCP source and thus comprises a potential hidden terminal.  

By means of the estimated carrier sensing range Hcs as well as 
RTT measurements at the TCP source, the out-of-interference 
delay OID of TCP data packets can be derived. The RTT is com-
posed of the sum of the delay experienced by the data packet on 
the way from TCP source to TCP destination and the delay expe-
rienced by the ACK packet sent from the TCP destination to the 
TCP source. Each of these delays comprises the time to forward 
the packet over h hops, where each forwarding requires a queuing 
delay tq and transmission delays tdata, and tACK, respectively. The 
parameters involved in the estimation of the out-of-interference 
delay are given in Table II. Using the measured RTT, we get: 



  

( ) ( )q data LLD q ACK LLARTT h t t t h t t t= + + + + +  (8) 

Here, tLLD and tLLA denote the average link layer delay required 
for transmitting the TCP data packet and the TCP ACK packet, 
respectively. This delay comprises the transmission time of IEEE 
802.11 control packets, link layer backoff, and potential retrans-
missions at link layer. Since information on link layer backoff and 
retransmissions on the path are not available at the TCP source 
node, we approximate tLLD and tLLA by defining the corresponding 
upper and lower bounds: 

3 dataLL LL
LLD cur slot

base base

sACK ACKt cw t
b b b

 ≤ ≤ + + ⋅ 
 

 (9) 

and 

3 ACKLL LL
LLA cur slot

base base

sACK ACKt cw t
b b b

 ≤ ≤ + + ⋅ 
 

 (10) 

The lower bounds apply when the TCP packet (data or ACK) 
can be delivered with no retransmissions. The upper bounds cor-
respond to the case when it takes the maximum number of re-
transmissions to deliver the TCP packet. According to the IEEE 
specifications [28], by default, a total of 4 attempts (i.e. 3 retrans-
missions) are distinguished at link layer before the packet is 
dropped (short retry limit). We omit the DIFS and SIFS intervals 
[28] due to their negligible sizes. We consider the case with 
RTS/CTS deactivated. In case RTS/CTS is activated, the corres-
ponding transmission times of the RTS and CTS packets at a 
bandwidth of bbase are considered in Eqs. 9 and 10. Assuming a 
data bandwidth b of 11Mbit/s and considering the corresponding 
values for the link layer parameters in Eqs. 9 and 10 as given by 
the IEEE specifications [28], we get: 

                                     0.11 7.72LLDms t ms≤ ≤  (11) 
and 
                                     0.11 4.60LLAms t ms≤ ≤  (12) 

By setting tLLD = 3.9ms and tLLA = 2.4ms as average values we 
get an approximation error of at maximum 3.8ms and 2.2ms, re-
spectively. For a typical wireless RTT of 60ms to 70ms at 
11Mbit/s, this makes up an approximation error of 3%-6% at 
maximum. Note that the approximation can be easily computed 
for arbitrary values for b, which can be inquired directly from the 
wireless NIC driver. 

Solving for tq in Eq. 8 while using tdata = sdata/b and tACK = 
sACK/b, we derive the average queuing delay as:  

                   1
2

data ACK
q LLD LLA

s sRTTt t t
h b

+ = − − − 
 

 (13) 

Subsequently, we can estimate the out-of-interference delay of 
the TCP data packet: 

                            ( )1 data
cs q

s
OID H t

b
 = + + 
 

 (14) 

The number of hops h on the network path to the receiver and 
the bandwidth b of the wireless network interface can be easily 
inquired without extra overhead from the kernel routing table and 
the IEEE 802.11 driver, respectively. 

In theory, the maximum spatial reuse with minimum collisions 
can be achieved with a transmission rate Rmax=1/OID. In fact, this 
 

TABLE II: PARAMETERS FOR THE ADAPTIVE COMPUTATION 
OF THE TRANSMISSION RATE 

Parameter Meaning 
L1 Signal attenuation of the TCP source node after 

1 hop 
Ln Signal attenuation of the TCP source node after 

n hops 
fc Frequency of the transmitted signal 

Hcs The carrier sensing range in terms of number 
of hops 

h Number of hops from sender to receiver 
b Bandwidth for transmission of data packets 

bbase 
Base bandwidth for transmission of IEEE 
802.11 control packets (1 Mbit/s) 

tq Average packet queuing delay per node 
tslot IEEE 802.11 slot time (20 microseconds) 

sdata 
Size of TCP data packet (incl. link layer 
overhead) 

sACK Size of TCP ACK packet (incl. link layer 
overhead) 

tdata Transmission time for TCP data packet 
tACK Transmission time for TCP ACK packet 

tLLD Average link layer delay for transmitting a 
TCP data packet  

tLLA Average link layer delay for transmitting a 
TCP ACK packet 

ACKLL Size of link layer ACK (14 bytes) 

cwcur 
Current size of IEEE 802.11 contention win-
dow 

RTT Current round trip time of TCP packets 
covRTT Coefficient of variation of RTT samples 
OID Current sample of out-of-interference delay 
OID  EWMA of out-of-interference delay 

transmission rate reflects the upper bound of the bandwidth-delay 
product for IEEE 802.11 multihop wireless networks. Following 
[10], an upper bound for the capacity of a path with h hops in an 
IEEE 802.11 multihop wireless network is given by h/(Hcs + 1) 
packets. Let Tone-way denote the time a packet traverses from the 
sender to the receiver. This quantity can be computed as 

( )/ 1one way csT OID h H− = ⋅ + . Subsequently, the number of pack-
ets in flight on the way from the TCP source to the TCP destina-
tion with a transmission rate of Rmax is given by: 

( )
1

1max one way
cs

P R T h
H−= ⋅ =

+
   (15) 

Thus, the number of packets in flight P transmitted with the 
maximum transmission rate Rmax reflects the maximum capacity 
of the network path. 

F Deriving the Adaptive Pacing Rate 
Since the computation of the adaptive transmission rate should 

account for both the current contention on the network path and 
the spatial reuse constraint, TCP-AP incorporates covRTT and OID 
in the transmission rate formula. Recall that a rate of Rmax=1/OID 
specifies an upper bound for the achievable goodput under theo-



  

retically optimal conditions, i.e. with perfect scheduling and no 
contention. In order to adaptively throttle the transmission rate R 
according to the current degree of contention, we use covRTT as 
additional decay factor: 



1
(1 2 )RTT

R
OID cov

=
⋅ +

 (16) 

The factor OID ⋅ (1+2covRTT) describes the delay between suc-
cessive packet transmissions at the TCP source (in milliseconds). 
Consequently, the transmission rate is 1/  (1 2 )RTTOID cov⋅ +  (i.e. one 
packet each OID ⋅ (1+2covRTT) milliseconds). The coefficient of 
variation quantifies the percentage of sample deviation from the 
mean. However, since we want to quantify the size of the spec-
trum in which the samples fluctuate around the mean, we double 
the value covRTT in the rate formula.  

Note that in favor of a stable transmission rate, we have to av-
erage the measured out-of-interference delay samples and employ 
a reasonable history size N for the computation of the coefficient 
of variation. Recall that N denotes the number of the most recent 
samples used for determining covRTT. For averaging the out-of-
interference delay samples, we use the exponentially weighted 
moving average (EWMA) with averaging weight α.  

That is: 
   (1 )oldOID OID OIDα α= ⋅ + − ⋅  (17) 

As given in [10], suitable values for the EWMA weight α and 
the history size N are 0.7 and 50, respectively. 

It is noteworthy that signal attenuation on some links in a chain 
may be either higher or lower than other intermediate links. This 
is due to sporadic, spatial-dependent interference that may occur 
on certain links as a result of nodes in the vicinity or other disturb-
ing devices operating in the 2.4 GHz ISM band. Such sporadic 
interference may decrease the estimation accuracy of Ln described 
in Eq. 6, since the signal attenuation is not similar for all links. 
Such inaccuracy may result in either a more conservative estima-
tion or a more optimistic estimation of OID. In case of a conserva-
tive estimation of OID, there would be no increased collisions due 
to hidden terminals since the TCP source node defers its transmis-
sion until previously sent packets are forwarded by its potential 
hidden terminal. However, due to the conservative estimation of 
OID, and according to Eq. 16, a potential slight decrease in the 
pacing rate may occur. On the other hand, in case of a more opti-
mistic estimation of OID, collisions with hidden terminals may 
occur. However, such collisions would be implicitly reflected in 
the derived coefficient of variation covRTT, which would increase 
due to the increased RTT fluctuation. Thus, according to Eq. 16, 
the increased collisions would be compensated by an automatic 
adjustment of the pacing rate, which would consequently decrease 
collisions at link layer. In Section V we show that such sporadic 
effects have a negligible impact on the performance of TCP-AP. 

G The refined TCP-AP Algorithm 
In order to give intuition on how to implement the refined 

TCP-AP algorithm, we present the pseudo code in Fig. 3. 

Key variables: 
Hcs:  Carrier sensing range in terms of # hops 
InterPacketDelay: Time between successive packet transmissions
OID:   Out-of-Interference Delay 
seqno:   Current TCP sequence number 
highestACK:  Sequence number of last ACK received 
awnd:  Receiver advertised window size 
cwnd:  Congestion window size 
covRTT  Coefficient of variation of RTT 
 
Utility functions: 
recv():     Function called upon ACK receipt 
pacing_timeout(InterPacketDelay):  Function called every InterPacketDelay time 
estimate_Hcs:     Function called to estimate the current  
    carrier sensing range in 
     terms of # hops 
 
Algorithm: 
function recv() {
 for each received ACK do  
  Hcs = estimate_Hcs() 

   

   
  calculate covRTT over most recent N RTT  
  samples 
  InterPacketDelay:=  
 done 
} 
 
function estimate_Hcs() { 
  
  
  
  
 return Hcs
} 
 
function pacing_timeout(InterPacketDelay) { 
 if seqno ≤ highestACK + min(awnd, cwnd) then 
  send new packet 
 else 
  stay idle 
 endif 
}  

Fig. 3: Pseudo code of refined TCP-AP algorithm 

H The TCP Framework Implementation for Linux 
In order to evaluate our adaptive pacing approach, we imple-

mented a user-space framework for TCP in Linux, in which we 
incorporated TCP-AP as well as the widely deployed variant TCP 
NewReno. The framework communicates directly with the net-
work layer in Linux. This is made possible by using raw IP sock-
ets, which only add IP and MAC headers to the packets by de-
fault. The TCP header is constructed and included by the frame-
work. The user interacts with the traffic generator and provides 
numerous parameters such as TCP destination, number of bytes to 
be transmitted, and employed TCP variant. The implementation 
of the TCP framework has a modular hierarchy and thus supports 
expansions with further TCP flavors. 

TCP-AP builds on TCP NewReno without changing any of its 
internal congestion control dynamics. Slow start, congestion 
avoidance, fast retransmit, and fast recovery are all kept un-
changed to ensure the friendliness to other TCP flavors. The main 
aspect that is modified in the implementation is the transmission 
of TCP packets, which is performed rate-based within the conges-
tion window. Specifically, TCP packets within the current 
 



  

                      
Fig. 4: Interaction between the TCP framework implementation and 
lower layers as well as the class hierarchy of the TCP framework 

congestion window are placed in a queue which schedules its 
transmission time according to the current adaptive pacing rate. 

For computing the adaptive pacing rate accurately, TCP-AP re-
quires fine grained timers. Unfortunately, the standard POSIX 
timers available in the Linux user space suffer from low accuracy, 
resulting up to 20 milliseconds timer-jitter. Thus, we integrated 
the high-resolution timer subsystem [15] into the Linux kernel, 
which provides a high accuracy in the order of nanoseconds. 

The TCP-AP implementation within the framework requires no 
modifications of underlying layers. The number of hops h re-
quired for the calculation of the pacing rate is acquired from the 
kernel routing table using default Linux APIs, whereas the link-
layer parameters needed are acquired from the IEEE 802.11 driver 
using default I/O control requests. This makes TCP-AP incremen-
tally deployable, since it works directly with off-the-shelf multi-
hop routing protocols as well as IEEE 802.11 link-layer drivers. 

V. PERFORMANCE EVALUATION 
We present a comprehensive performance study of TCP-AP 

versus the widely deployed TCP NewReno by means of our mi-
niaturized wireless mesh testbed. In all experiments, except for 
experiments showing transient behavior, we conduct steady-state 
simulations starting with an initially idle system. In each run, we 
activate TCP connections until 55,000 packets are successfully 
transmitted, and split the output of the experiment in 11 batches, 
each 5,000 packets in size. The first batch is discarded as initial 
transient. The considered performance measures are derived from 
the remaining 10 batches with 95% confidence intervals by the 
batch means method. 

For all experiments, we set the TCP packet size to 1,460 bytes 
and the TCP receiver's advertised window to 64 packets. We set 
the IEEE 802.11 data rate to 11 Mbit/s and the attenuation level of 
the variable attenuators to 16 dB, unless otherwise stated. This 
provides a transmission range of roughly 0.5m. 

A FTP-like Traffic 
In the first set of experiments, we consider scenarios with FTP-

like, bulky data transfer in different network topologies. That is, 
the TCP source transmits packets continuously, representing a 

large file transfer. 

Chain Topology 
The first topology we consider is an equally spaced chain com-

prising h+1 nodes (h hops) with a single flow, as depicted in Fig. 
5. TCP packets traverse along the chain from the leftmost node 
(i.e., the source) to the rightmost node (i.e., the destination). 
Nodes in the chain are positioned such that only direct neighbors 
can communicate with each other over one hop. 

First, we validate the TCP NewReno implementation of our 
Linux TCP framework. We do so by comparing the goodput 
achieved by our user-space TCP NewReno to the Linux kernel 
TCP using the Iperf measurement tool [29]. Table III shows the 
goodput of each variant for varying number of hops between TCP 
source and TCP destination. The goodput is averaged over 40 
runs, where each run comprises 10 batches. We omit the confi-
dence intervals since they only make up 2% of the corresponding 
goodput value, at maximum. 

In Table III we see that the values of both user-space TCP Ne-
wReno and Linux kernel TCP are almost identical. The Linux 
kernel TCP slightly outperforms user-space TCP by about 1% due 
to the typical lower jitter and CPU time of kernel-space imple-
mentations compared to user-space implementations.  

In order to evaluate TCP-AP versus TCP NewReno in a variety 
of different network conditions, we vary network-related parame-
ters to reflect typical real world settings. For one, we consider the 
goodput of TCP-AP and TCP NewReno with and without the 
RTS/CTS handshake. Furthermore, we set the attenuation level of 
the variable attenuators such that the signal between nodes is ei-
ther optimal (at low attenuation level) or very weak (at high atten-
uation level). Such a high attenuation level and/or weak inter-node 
signal often occurs in real multihop wireless networks, in cases 
where either links between nodes suffer from high external inter-
ference or the distance between nodes is considerably large.  
 

 
Fig. 5: 9-hop chain topology with a single flow 

TABLE III: AVERAGE GOODPUT OF USER-SPACE TCP NEWRENO VS.  
LINUX KERNEL TCP 

Number of 
Hops 

Avg. Goodput of 
User-space TCP  

NewReno [Kbit/s] 

Avg. Goodput of 
Linux Kernel TCP 

[Kbit/s] 

1 5588 5671 
2 2750 2843 
3 962 981 
4 709 722 
5 748 761 
6 903 919 
7 773 783 
8 722 731 
9 657 672 



  

 
Fig. 6: Goodput vs. number of hops without RTS/CTS and with low  

signal attenuation (16 dB) 

 
Fig. 8: Goodput vs. number of hops without RTS/CTS and with high 

signal attenuation (29 dB) 

 
Fig. 10: NS-2: Goodput vs. number of hops without RTS/CTS 

 

 
Fig. 7: Goodput vs. number of hops with RTS/CTS and with low signal 

attenuation (16 dB) 

 
Fig. 9: Goodput vs. number of hops with RTS/CTS and with high signal 

attenuation (29 dB) 

 
Fig. 11: NS-2: Goodput vs. number of hops with RTS/CTS 

Figures 6 to 9 show the results of this experiment, plotted as 
goodput versus number of hops between TCP source and TCP 
destination. In Fig. 6, where RTS/CTS is disabled and the signal 
between nodes is optimal, TCP-AP outperforms TCP NewReno 
by up to 113%. In case RTS/CTS is enabled, as shown in Fig. 7, 
TCP-AP has only a slight increase in goodput up to 6 hops. At a 
chain length of 7 to 9 hops, TCP NewReno achieves more good-
put than TCP-AP. This is due to that fact that with RTS/CTS acti-
vated, the number of hidden terminals in a chain significantly 

decreases, resulting in an increased goodput for TCP NewReno, 
which suffers at most from hidden terminal effects. However, 
when comparing Fig. 6 with Fig. 7, we can state that the 
RTS/CTS overhead reduces the goodput achieved by TCP-AP up 
to almost 50% as well as the goodput of TCP NewReno for 1 to 3 
hops. This is consistent with previous studies such as [3] and [14], 
which have shown that RTS/CTS degrades goodput significantly. 

The previous findings are consistent with the results of Figures 
8 and 9, in which the signal between nodes is very weak due to 



  

the high attenuation level. Comparing both figures, we observe 
that RTS/CTS also results in a significant degradation in goodput. 
Furthermore, we see that TCP-AP achieves up to ten times more 
goodput than TCP NewReno. That is, in such an environment 
where the signal between nodes is not optimal, the aggressive 
transmission of TCP NewReno greatly overwhelms the channel, 
resulting in a severe packet loss rate. On the other hand, the adap-
tive pacing approach of TCP-AP adjusts the transmission rate 
according to the current state of the channel, reducing packet loss, 
and thus achieving more goodput. As the signal between nodes is 
at its lower limit, it does not suffice for delivering packets suc-
cessfully for a chain of 7 to 9 hops. 

To compare the results acquired from the TCP implementations 
in the testbed with the TCP implementations in the network simu-
lator ns-2 [12], we conduct a simulation study in ns-2, where we 
examine the goodput of TCP NewReno versus TCP-AP for vary-
ing number of hops. Figures 10 and 11 show the results of the 
simulation with and without RTS/CTS, respectively. When com-
paring Fig. 6 with Fig. 10, we notice that although the improve-
ment of TCP-AP with respect to TCP NewReno is very similar, 
the number of hops at which such improvement is at its maximum 
varies. While the largest gap between TCP-AP and TCP NewRe-
no lies at 4 hops for the testbed experiment (Fig. 6), it lies at 7 
hops in the simulation (Fig. 10). The reason for such shift in the 
number of hops is that in ns-2, the out-of-interference delay only 
corresponds to a fixed ratio between transmission range and carri-
er sensing/interference range, which is equal to 250m/550m. In 
the testbed, such a delay is variable and is not bound to a specific 
number, which is considered by the refined implementation of 
TCP-AP in the testbed. Thus, as positions of hidden terminals 
vary in the simulation with respect to the testbed, the number of 
hops at which TCP-AP achieves its best goodput compared to 
TCP NewReno also varies. Consistent with Fig. 7, Fig. 11 shows 
that the RTS/CTS handshake decreases TCP goodput due to the 
higher overhead associated with it. 

In a further experiment, we evaluate the fairness between com-
peting flows when employing TCP-AP versus TCP NewReno. As 
depicted in Fig. 12, two competing TCP flows run from both ends 
of a 6-hop chain, i.e. nodes 1 and 6, to the middle node 4. This 
emulates the case in which some node in a mesh network wishes 
to download two files from two different nodes simultaneously. 

Figures 13 and 14 show the goodput of each of the two flows 
evolving over time for TCP-AP and TCP NewReno, respectively. 
In Fig. 13, we observe how both flows share the available band-
width equally when employing TCP-AP. In contrast, in Fig. 14, 
we see that TCP NewReno results in almost a complete starvation 
of flow 2 due to its aggressive transmission. That is, since IEEE 
802.11 favors aggressive flows over less aggressive ones, the flow 
which succeeds to acquire the channel first, i.e. flow 1 in this case, 
also succeeds to take control of the channel until the end of its 
transmission. On the contrary, TCP-AP adjusts its adaptive pacing 
rate such that multiple flows share the bandwidth equally. The 
component of the adaptive pacing rate of TCP-AP which is re-
sponsible for maintaining inter-flow fairness is the coefficient of 
variation covRTT. As given in Eq. 16, this factor throttles the adap-
tive pacing rate proportional to the current interference caused by 
other flows, and thus prevents one or more flows from starving. 

As flows in this experiment mutually impose a nearly equal de-
gree of interference, their corresponding adaptive pacing rate is 
also nearly equal. Hence, the bandwidth is distributed fairly 
among both flows. 

Fig. 15 shows the goodput of both TCP flows as well as the 
aggregate goodput achieved throughout the experiment. Consis-
tent with the previous results, TCP-AP achieves almost optimal 
fairness between the flows, while TCP NewReno favors flow 1 at 
cost of flow 2. We notice that TCP NewReno achieves slightly 
more aggregate goodput than TCP-AP, which is due to the known 
trade-off between aggregate goodput and fairness caused by the 
absence of optimal scheduling of the IEEE 802.11 link layer pro-
tocol [10] [24]. 

In a third experiment, we evaluate the responsiveness of 
TCP-AP versus TCP NewReno. As responsiveness we denote 
how quickly the congestion control algorithm adapts to chang-
ing network conditions such as additional flows competing for 
the bandwidth. We re-conduct the previous experiment with 
the two competing flows, however, with different start and 
stop times of the considered flows. Specifically, we let flow 1 
run from the beginning to the end of the experiment, i.e. until 
the 40th second. Flow 2 starts at the 10th second of the expe-
riment and stops at the 30th second. We then investigate how 
flow 1 reacts upon the activation of flow 2. Figures 16  
 

 
Fig. 12: Parallel download: Competing TCP flows 

 
Fig. 13: Fairness of TCP-AP: Goodput vs. time 

 
Fig. 14: Fairness of TCP NewReno: Goodput vs. time 



  

 
Fig. 15: Goodput and fairness of the competing TCP flows 

 
Fig. 16: Responsiveness of TCP-AP: Goodput vs. time 

 
Fig. 17: Responsiveness of TCP NewReno: Goodput vs. time 

and 17 show the results of this experiment. We notice that, em-
ploying TCP-AP, flow 1 utilizes the available bandwidth when 
there is no competing flow and shares the bandwidth fairly when 
both flows compete for the channel. On the contrary, due to the 
aggressiveness of TCP NewReno, flow 1 acquires the entire 
bandwidth available throughout the experiment time, resulting in 
a complete starvation of flow 2. 

Parallel Chains Topology 
In this experiment, we consider a topology of two 4-hop sym-

metric parallel chains, as depicted in Fig. 18. The chains lie 

beyond each other's transmission range, but within each other's 
interference range. We run one TCP flow on each chain and in-
vestigate the achieved goodput of each flow as well as the aggre-
gate goodput, i.e. the sum of the goodput achieved by both flows. 

Figures 19 to 22 show the results of this experiment. In Fig. 19, 
we observe how TCP-AP achieves to share the goodput equally 
among both flows, whereas TCP NewReno penalizes flow 1 in 
favor of flow 2. Moreover, TCP-AP achieves around 75% more 
aggregate goodput than TCP NewReno. Figures 20 and 21 show 
the transient behavior of both flows during the first 20 seconds of 
the experiment. The figures show the sequence numbers of TCP 
packets received at the TCP destination for TCP-AP and TCP 
NewReno, respectively. In Fig. 20 we notice that the growth in 
the sequence numbers has a similar slope for both flows, indicat-
ing that the bandwidth is shared equally among them. In contrast, 
in case of TCP NewReno, flow 2 acquires most of the bandwidth 
as its sequence numbers increase steeply, while the sequence 
number growth of flow 1 stagnates. This indicates a high TCP 
packet loss rate and multiple TCP timeouts for flow 1 in favor of 
flow 2. 

 

 
Fig. 18: Parallel chains topology 

 
Fig. 19: Goodput and fairness for the parallel chains topology 

 
Fig. 20: TCP-AP: Sequence numbers of TCP packets received at TCP 

destination 



  

 
Fig. 21: TCP NewReno: Sequence numbers of TCP packets received 

at TCP destination 

 
Fig. 22: TCP-AP: Coefficient of Variation of RTT 

Fig. 22 shows the coefficient of variation of RTTs, plotted over 
time for both TCP-AP flows. It is obvious that the gradient of the 
coefficient of variation is similar for both flows. This implies that 
both flows experience similar RTT fluctuation, and thus transmit 
at a similar pacing rate, which is consistent with the fairness re-
sults shown in Fig. 21. 

Random Topologies 
Random node topologies are typically found in community 

mesh networks such as [3] and are widely deployed in reality. We 
evaluate TCP-AP and TCP NewReno in such topologies by con-
sidering random placements of the testbed's 20 antenna-stations. 
The 20 antenna-stations are distributed uniformly on a flat area of 
2m x 3m such that full connectivity between each pair in the net-
work over one or more hops is granted. In addition to the batch 
means method described earlier, and in order to achieve optimal 
results in terms of representativeness, we consider 20 replicates 
when deriving performance measures. Each replicate corresponds 
to a different random placement of the nodes. 

Fig. 23 shows the cumulative distribution function (CDF) of 
goodput between each pair in the network for TCP-AP versus 
TCP NewReno over all considered 20 random node placements. 
The higher slope of NewReno's CDF for low goodput values (i.e. 
0 to 2000 Kbit/s) and lower slope for high goodput values (i.e. 
4000 Kbit/s to 6000 Kbit/s) indicate that employing TCP-AP 
yields more goodput than TCP NewReno. Specifically,  
 

 
Fig. 23: Cumulative distribution function (CDF) of goodput between 

each pair in the network (Average goodput: TCP NewReno: 875 Kbit/s, 
TCP-AP: 1123 Kbit/s. Median goodput: TCP NewReno: 847 Kbit/s, 

TCP-AP: 1413 Kbit/s) 

 
Fig. 24: Goodput of five parallel flows running between five randomly 

chosen pairs 
the average goodput of TCP NewReno constitutes 875 Kbit/s, 
whereas the average goodput of TCP-AP makes up 1123 Kbit/s, 
i.e. around 28% more goodput than TCP NewReno. As for the 
median goodput, TCP NewReno achieves only 847 Kbit/s while 
TCP-AP achieves 1413 Kbit/s, i.e. around 67% improvement in 
goodput. 

In Fig. 24 we consider a representative sample of the 20 repli-
cate-topologies, in which we run five parallel TCP flows between 
five randomly chosen pairs. We plot the individual goodput of 
each flow as well as the aggregate goodput both for TCP-AP and 
TCP NewReno accordingly. We observe how TCP NewReno lets 
flow 2 acquire most of the available bandwidth at cost of the other 
flows, while letting flows 4 and 5 almost completely starve. In 
contrast, TCP-AP prevents the starving of any flow by dividing 
the available bandwidth more fairly among flows, while achieving 
about 46% more aggregate goodput than TCP NewReno. 

The reason why flow 2 acquires most of the available band-
width is that it runs on a 2-hop chain, while other flows run on 
chains with hops greater or equal 4. As a result of the IEEE 
802.11 spatial reuse capacity limits, and as validated in Figures 6 
to 11, the TCP goodput decreases with increasing number of 
hops. This affects TCP NewReno more than TCP-AP since, as 
discussed above, TCP NewReno does not throttle its rate accord-
ing to other flows in the vicinity. Thus, as the most aggressive 
flow, flow 2 acquires most of the available bandwidth at the cost 
of other flows. 



  

B HTTP-like Traffic 
In the second set of experiments, we consider variable length 

flows, i.e. HTTP-like data transfer, where the TCP sender trans-
mits small files with variable pause times between successive file 
transfers. Following [18], we assume that file sizes are Pareto 
distributed with mean 30 Kbytes and shape factor β = 1.5, whe-
reas pause times between successive file transfers are exponential-
ly distributed. Figures in this section describe the behavior of the 
considered TCP variants during HTTP ON-phases, in which the 
contents of a webpage are typically downloaded. 

We reconsider the random topologies in Section V.A and adopt 
the same settings given, except using HTTP-like traffic instead of 
FTP-like traffic to derive performance measures. Performance 
measures in Figures 25 and 26 are derived as an average over 
each five-pair set in the network, where each set contains five 
simultaneously active HTTP connections. In Fig. 27 we consider 
five concurrent HTTP connections running between five random-
ly chosen pairs, whereas in Fig. 28 we consider one HTTP flow 
between each pair in the network. 

Fig. 25 shows the average download delay of the downloaded 
files for varying mean of exponentially distributed pause times for 
TCP NewReno and TCP-AP, respectively. The download delay 
denotes the time needed for downloading the desired file. We 
observe that for small pause times of 0.1s and 0.2s, TCP-AP re-
quires up to 51% less download delay than TCP NewReno. As 
pause times between successive file transfers increase, the differ-
ence in download delay between TCP NewReno and TCP-AP 
vanishes. That is, for pause times above 0.2s, the download delay 
of TCP NewReno and TCP-AP is almost identical. Such behavior 
is due to the traffic load in the network, which is high for small 
pause times and decreases gradually as pause times increase. 
Thus, since TCP-AP is superior to TCP NewReno at high net-
work load, which causes increased contention at link layer, TCP-
AP outperforms TCP NewReno for small pause times. As pause 
times increase, contention in the network decreases and the differ-
ence in download delay between TCP-AP and TCP NewReno 
becomes smaller. 

We evaluate the fairness in this experiment by computing 
Jain’s fairness index [17], which is defined as: 
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where n is the number of flows and xi denotes the goodput 
achieved by flow i. The index ranges between 0 and 1. An index 
of 1 corresponds to the best fairness achievable between compet-
ing flows whereas and index of 1/n denotes the case where a sin-
gle flow acquires the entire bandwidth available. 

Fig. 26 shows Jain's fairness index of TCP NewReno and 
TCP-AP for increasing pause times. Again, for small pause times, 
i.e. 0.1s and 0.2s, TCP-AP achieves considerably better fairness 
than TCP NewReno. As pause times increase, the fairness of TCP 
NewReno improves until reaching the same level like TCP-AP. 
Note that in such random topologies, an optimal fairness index of 
1 is typically not achieved, since Jain's fairness index is only op-
timal when all considered flows have similar physical characteris-
tics. Such similarities include for instance running over the same 
number of hops, which is typically not the case in random envi-
ronments. 

Fig. 27 shows the average download delay of five concurrent 
HTTP connections running between five randomly chosen pairs 
with a mean for pause times between successive file transfers of 
0.1s. Consistent with the previous results, TCP-AP achieves 
around 25% less aggregate download delay than TCP NewReno, 
while achieving better fairness between the competing HTTP 
flows. 

In Fig. 28, we plot the cumulative distribution function (CDF) 
of download delay between each pair in the network. The higher 
slope of TCP-AP's CDF for low download delays points out 
 

 
Fig. 25: Average download delay vs. mean for pause times  

 
Fig. 26: Jain's fairness index vs. mean for pause times  

 
Fig. 27: Average download delay for five concurrent HTTP flows  



  

 
Fig. 28: Cumulative distribution function (CDF) of download delay be-

tween each pair in the network (Average download delay: TCP 
 NewReno: 1.26s, TCP-AP: 0.82s. Median download delay: TCP 

 NewReno: 0.64s, TCP-AP: 0.5s) 

that files are downloaded faster using TCP-AP than the case when 
using TCP NewReno. Specifically, the average download delay of 
TCP NewReno is 1.26s versus 0.82s for TCP-AP, whereas the 
median download delay of TCP NewReno makes up 0.64s com-
pared to 0.5s for TCP-AP. This makes up 35% less average 
download delay and 22% less median download delay for TCP-
AP compared to TCP NewReno. 

VI. CONCLUSION 
We introduced an effective end-to-end congestion control algo-

rithm for TCP in real multihop wireless networks. Our approach, 
denoted as TCP with Adaptive Pacing (TCP-AP), employs rate-
based transmission within the current congestion window. By 
adapting the transmission rate to the current network state, TCP-
AP reduces collisions at link layer, and thus achieves improved 
goodput and fairness. Due to the TCP-compatibility of TCP-AP, 
and since it relies solely on end-to-end measurements of round 
trip times and requires no modifications at the routing layer or the 
link layer, TCP-AP is easily deployable. 

We implemented TCP-AP in Linux and validated its feasibility 
in a specially built 20-node wireless mesh testbed. A comprehen-
sive performance study showed that, depending on the current 
level of interference and signal attenuation, TCP-AP yields up to 
ten times more goodput than TCP NewReno, while achieving 
excellent fairness results. The acquired results indicate that the 
gain of TCP-AP is particularly high for FTP-like traffic, where 
contention at link layer is considerably heavy.  

Currently, we are investigating the suitability of TCP-AP for 
MIMO mesh networks, in particular for indoor mesh networks 
adopting IEEE 802.11n technology. The acquired findings will 
then be used to further calibrate the adaptive pacing algorithm for 
the deployment in future large-scale outdoor mesh network scena-
rios. Such networks may require considering different signal at-
tenuation equations due to the different propagation characteris-
tics of the radio signal. Due to the modular design of the adaptive 
pacing approach introduced in this paper, different path loss for-
mulas can be easily employed in the calculation of the out-of-
interference delay (OID). 
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