

A Practical Adaptive Pacing Scheme for TCP in
Multihop Wireless Networks

Sherif M. ElRakabawy, Member, IEEE, and Christoph Lindemann, Senior Member, IEEE

Abstract—We introduce and evaluate a feasible end-to-end conges-
tion control algorithm for overcoming the severe deficiencies of
TCP in IEEE 802.11 multihop wireless networks. Our approach,
which we denote as TCP with Adaptive Pacing, implements rate-
based scheduling of transmissions within the TCP congestion win-
dow. The TCP source adaptively sets its transmission rate using an
estimate of the current out-of-interference delay and the coefficient
of variation of recently measured round-trip times. TCP-AP retains
the end-to-end semantics of TCP and does neither rely on modifica-
tions at the routing or the link layer, nor requires cross-layer infor-
mation from intermediate nodes along the path. Opposed to pre-
vious proposals that build on network simulators, we implement and
evaluate our approach in a real wireless mesh testbed comprising 20
nodes. In a comprehensive comparative performance study using
our testbed we show that, depending on the current network state
and traffic patterns, TCP-AP achieves up to ten times more goodput
than TCP NewReno, provides excellent fairness, and is highly res-
ponsive to changing network traffic conditions.

Index Terms— Analysis and design of transport protocols, end-
to-end congestion control, IEEE 802.11 wireless mesh testbeds,
performance evaluation.

I. INTRODUCTION
For several years now, multihop wireless networks have been

within the focus of research in the networking community. While
most of the research in this area is still conducted in network si-
mulators such as [12] and [27], the trend is increasingly moving
towards deploying such networks in reality. Examples include
MIT Roofnet [3], TFA-Rice ([4], [14]), All-wireless Office [11],
and Freifunk [26], which have proven the feasibility of multihop
wireless networks.

Within several research topics in multihop wireless networks,
TCP performance has acquired great attention. Multihop wireless
networks using IEEE 802.11 namely possess several properties,
which are different to the wired Internet for which the widely
deployed TCP NewReno implementation has been optimized.
Opposed to wired networks, in IEEE 802.11 networks, the wire-
less channel is a scarce resource shared among nodes within their
radio range. Furthermore, channel capture, hidden and exposed

terminal effects, and the IEEE 802.11 medium access control
constitute features of multihop wireless networks not present in a
wired IP network. In fact, for multihop wireless networks, most
losses experienced by TCP are due to packet drops at link layer
and not due to buffer overflow [13]. Furthermore, since the con-
gestion control of TCP NewReno is based on lost data packets,
the size of its congestion window is overshooting rather than
proactively sensing incipient congestion by monitoring the net-
work traffic. Because of all these features, TCP NewReno pos-
sesses quite poor performance in multihop wireless networks, as
well as exhibits severe unfairness among competing TCP flows.

Several approaches (e.g. [10], [13], [22] and [24]) have been
proposed for improving TCP performance in multihop wireless
networks. Unfortunately, such approaches have been only de-
signed and evaluated in network simulators. Simulators often rely
on optimistic assumptions compared to the real world and, thus,
do not always deliver accurate results. Moreover, many physical
measures in reality, such as the distance between nodes in a net-
work, can be simply inquired in simulations, but are not available
at nodes in reality due to the absence of global knowledge.

For the best of our knowledge, we are the first to introduce and
evaluate a feasible, and TCP-compatible, end-to-end approach for
improving TCP goodput and fairness in a real wireless mesh
testbed rather than in simulators. We build on previous work [10]
and introduce a novel congestion control algorithm for TCP over
real multihop IEEE 802.11 networks, implementing rate-based
scheduling of transmissions within the TCP congestion window.
In our approach, a TCP sender adaptively sets its transmission rate
using an estimate of the current out-of-interference delay and the
coefficient of variation of recently measured round-trip times. The
out-of-interference delay describes the time elapsed between
transmitting a TCP packet by the TCP source node i and receiving
the packet at the node which lies beyond the range in which colli-
sions with node i may occur. The novel TCP variant, which is
fully TCP-compatible, is denoted as TCP with Adaptive Pacing
(TCP-AP). We incorporate an advanced end-to-end algorithm in
TCP-AP, which estimates the current out-of-interference delay
and derives a suitable adaptive pacing rate accordingly.

Opposed to previous proposals for improving TCP over multi-
hop IEEE 802.11 networks, TCP-AP retains the end-to-end se-
mantics of TCP and does neither rely on modifications at the
routing or the link layer nor requires cross-layer information from
intermediate nodes along the path. In order to evaluate the per-
formance of TCP-AP versus the widely deployed TCP NewReno,
we build a miniaturized wireless mesh testbed comprising 20
nodes and variable signal attenuators. A comprehensive perfor-
mance study using the miniaturized wireless mesh testbed shows
that, depending on the current network state and traffic patterns,

Manuscript received July 11, 2009; accepted November 1, 2010. This

work was supported in part by the German Research Council (DFG) under
grant Li 645/18-2.

Sherif M. ElRakabawy, the corresponding author, is with the University
of Leipzig, Department of Computer Science, Johannisgasse 26, D-04103,
Germany (email: sme@eecs.berkeley.edu). Part of the research in this paper
was conducted while author was visiting researcher with the EECS Depart-
ment at the University of California, Berkeley.

Christoph Lindemann is with the University of Leipzig, Department of
Computer Science, Johannisgasse 26, D-04103, Germany (email:
cl@rvs.informatik.uni-leipzig.de).

TCP-AP achieves up to ten times more goodput than TCP Ne-
wReno, provides excellent fairness, and is highly responsive to
changing network traffic conditions.

The remainder of this paper is organized as follows. Section II
summarizes related work on TCP for multihop wireless networks
and Section III describes the miniaturized wireless mesh testbed
used for evaluating our approach. In Section IV, we introduce the
novel TCP congestion control algorithm and describe its imple-
mentation in the Linux operating system. A comprehensive per-
formance study of TCP-AP versus TCP NewReno using our wire-
less mesh testbed is presented in Section V. Finally, concluding
remarks are given.

II. RELATED WORK
Wei et al. [23] and ElRakabawy et al. [10] showed that pacing

for TCP can improve goodput and fairness both for wired as well
as for multihop wireless networks. The authors in [23] found out
that pacing yields reduced burstiness of traffic, increased syn-
chronization among flows as well as fragmented SACK blocks in
a flow. Although the authors point out to a possible decrease in
performance when competing with aggressive flows, they con-
clude that pacing brings significant benefits for many applica-
tions. In [10], we introduced a preliminary version of TCP with
Adaptive Pacing and evaluated it using ns-2 [12]. The results
showed that adaptive pacing yields significant performance im-
provement with respect to standard TCP.

As opposed to [23], our approach is tailored for multihop wire-
less networks and not for the Internet, which possesses fundamen-
tally different characteristics. We build our approach on [10].
Since the algorithm in [10] is optimized for simulations, we intro-
duce an improved algorithm which exploits end-to-end informa-
tion to derive a suitable adaptive pacing rate. Furthermore, we
evaluate our approach in a real mesh testbed rather than in simula-
tions.

Fu et al. [13] pointed out the hidden terminal problem in multi-
hop wireless networks and experimentally showed that for a chain
topology the optimal windows size, for which TCP achieves best
throughput, is roughly given by 1/4 of the hop count of the path.
Xu et al. [24] proposed the neighborhood RED (NRED) scheme
at routing layer to throttle TCP senders when incipient congestion
is detected, by purposely dropping TCP packets at intermediate
nodes. In [20], Nahm et al. analyzed the performance of TCP in
multihop wireless networks by investigating the interaction of
TCP with the routing and link layers. They proposed a fractional
window increment scheme to prevent TCP's congestion window
from overshooting to improve goodput.

Our approach differs fundamentally from [13], [20], and [24].
TCP-AP just requires slight modifications at the transport layer
and does neither require modifications at the routing layer as [24]
and link layer as [13], nor extra communication between neigh-
boring nodes. As a consequence, TCP-AP can be incrementally
deployed. Furthermore, beyond [20], TCP-AP integrally improves
both fairness and goodput.

Sundaresam et al. [22] introduced ATP, and Anastasi et al.
proposed TPA [1], which are both novel transport protocols for
multihop wireless networks. ATP employs pure rate-based trans-
mission of packets, where the transmission rate is determined

using feedback from intermediate nodes along the path. The au-
thors propose to dynamically adjust the transmission rate accord-
ing to the maximum packet queuing delay on intermediate nodes
along the network path. TPA uses a similar congestion control
algorithm like TCP, in such that packets are transmitted window-
based. By limiting the congestion window size and thinning the
ACK stream using delayed ACK mechanisms, a less aggressive
data transfer is achieved.

In contrast to [22], TCP-AP retains the end-to-end semantics of
TCP without relying on any cross-layer information from inter-
mediate nodes along the path. Furthermore, opposed to [1] and
[22], TCP-AP is fully TCP compatible and thus can be incremen-
tally deployed.

Opposed to [13], [22] and [24], our approach is tailored and
evaluated in a real mesh testbed rather than simulations. This
makes our approach feasible and improves the reliability of the
acquired results.

Several studies proposed clamping the TCP congestion win-
dow in order to reduce packet bursts from congesting the wireless
channel. Casetti et al. proposed Westwood+ [5], a sender-side
modification of TCP's congestion control algorithm over lossy
wireless links. Westwood+ monitors the arrival rate of TCP
ACKs and adjusts the congestion window and slow start threshold
accordingly. In [19], Kawadia et al. investigated the performance
of TCP in an indoor testbed consisting of 7 off-the-shelf laptops.
Consistent with [13], the authors found out that clamping the size
of the congestion window can improve TCP throughput in multi-
hop wireless networks. Koutsonikolas et al. reported similar re-
sults in [9], where they investigated the impact of the congestion
window size on TCP throughput. In [2], the authors provided a
receiver-side control algorithm denoted as CLAMP to control the
TCP receiver's advertised window limit. They showed that
CLAMP can provide a fairer allocation of the bandwidth than
TCP NewReno.

In contrast to [5], [9], and [19], we do not only address TCP
throughput maximization, but also fairness between competing
flows. While Westwood+ [5] and CLAMP [2] are mainly tailored
for one-hop wireless communication with lossy links, TCP-AP
addresses the specific problems of TCP over IEEE 802.11 multi-
hop networks, e.g. hidden terminal effects. Clamping the window
size like in [9] and [19] does not adapt the transmission rate of
TCP according to the current network state, but rather sets an up-
per bound for the congestion window. Such an upper bound does
not prevent packet bursts from being transmitted back-to-back,
which is the main reason for the unfairness problem of TCP in
multihop networks.

III. THE MINIATURIZED WIRELESS MESH TESTBED
To study the performance of the enhanced TCP-AP algorithm

in reality and compare it to the widely deployed TCP NewReno,
we built up a miniaturized wireless mesh testbed. The testbed,
which is depicted in Fig. 1, comprises 20 wireless mesh nodes.
Each node consists of a low-cost PC with an Intel Celeron 3.2
GHz processor and an IEEE 802.11b wireless PCI card, which is
connected to a variable signal attenuator and a 2.1dBi low-gain
antenna. Using the variable attenuators, the signal power of the
wireless PCI cards can be adaptively shrunk in order to limit the

Fig. 1: Miniaturized Wireless Mesh Testbed

TABLE I: HARDWARE AND SOFTWARE COMPONENTS OF THE
MINIATURIZED TESTBED

Hardware

Component Description
PC Siemens ESPRIMO P2510 Celeron 3,2 GHz,

512 Mbytes RAM, 80 Gbyte HDD
Wireless NIC Netgear IEEE 802.11b wireless PCI card

WG311T with Atheros chipset
Variable attenuator Broadwave 751-002-030 variable attenuator,

attenuation range 0-30dB in 1 dB steps
Coaxial cable 7m aircell5 coaxial-cable, 50 Ohm with SMA /

RPSMA connectors, attenuation: -0.53 dB/m
Antenna Maldol mini 2.1 dBi antenna with magnetic

mount and 3m SMA cable
Software

Component Description
Operating System SuSE Linux 10.2 with custom kernel version

2.6.18 with high resolution subsystem patch
Wireless NIC driver Madwifi Linux kernel device driver for Atheros

chipsets version 0.9.2
Multihop routing
protocol

OLSR for Linux version 0.4.10 with ETX sup-
port

maximum transmission range of each node. Thus, similar to [8],
large wireless mesh networks spanning a few kilometers can be
scaled down to a few meters, making quick topology and parame-
ter modifications for efficient evaluation of network protocols
possible.

Testbed nodes run a SuSE Linux 10.2 operating system with a
custom-compiled kernel version 2.6.18 with the high-resolution
timer subsystem patch [15]. As driver for the wireless PCI cards,
we employ the Linux Madwifi kernel device driver version 0.9.2
for Atheros chipsets. We employ the Optimized Link State
Routing Protocol (OLSR) version 0.4.10 for Linux [6] [25] for
multihop routing, which incorporates the ETX metric [7] for se-
lecting routes based on the current loss probability of the links.

All wireless nodes further possess a Gigabit Ethernet NIC
which are connected to the subnet of the department through a
Gigabit switch. This allows a remote management of the wireless
nodes from any wired host in the subnet. Hence, wireless experi-
ments can be started and stopped from a remote computer and
traces can be copied and evaluated through the wired network.
Table I shows a detailed description of hardware and software
components of the miniaturized testbed.

IV. PUTTING TCP-AP INTO PRACTICE
A Discrepancy between Simulation and Reality

Simulation is still the most common way for designing and
evaluating new protocols for research in multihop wireless net-
works. Due to the higher complexity and expenses of real multi-
hop wireless networks, many researchers choose to implement
and evaluate newly designed protocols in simulators such as ns-2
[12] and Qualnet [27]. However, simulators often rely on optimis-
tic assumptions compared to the real world and, thus, do not al-
ways deliver accurate results. Moreover, many physical measures
in reality, such as the distance between nodes in a network, can be
simply inquired in simulations, but are not available at nodes in
reality due to the absence of global knowledge. Thus, previous
approaches such as [10], [13] and [22], which rely on such meas-
ures in order to be feasible, cannot be simply deployed in real
multihop wireless networks.

The current adaptive pacing approach, as given in [10], is op-
timized for a specific, simulation-based ratio between the trans-
mission range and carrier sensing/interference range of the nodes.
Specifically, the 4-hop propagation delay [10] [13] only corres-
ponds to a ratio between the transmission range and the carrier
sensing/interference range which is equal to 250m/550m. In real
life, such ranges strongly depend on a number of variable physical
parameters such as current transmission power and channel inter-
ference, and thus typically fluctuate over time. Consequently, in a
real multihop wireless environment, the suitable number of hops
required as a delay for the adaptive pacing rate is variable and is
not bound to a specific number, such as 4, as given in [10] and
[13]. In fact, the suitable propagation delay required by TCP to
consider the spatial reuse constraint of IEEE 802.11, which we
denote as out-of-interference delay (OID), changes over time de-
pending on current network conditions. Thus, the main challenge
for adopting the adaptive pacing approach in [10] into practice is
to develop an algorithm for adaptively determining the out-of-
interference delay. The complexity lies in the fact that, other than
in simulation, parameters needed for determining such delay can-
not be simply inquired by the TCP source node. Instead, the delay
must be approximated by means of measures which are available
at the TCP source node.

Subsequently, we discuss the main deficiencies of standard
TCP variants in multihop wireless networks and how our ap-
proach overcomes such deficiencies. Furthermore, we give insight
into the interaction between the carrier sensing range and hidden
terminals in a chain of nodes. We show how to exploit informa-
tion about the carrier sensing range to derive a suitable estimation
of the out-of-interference delay and how to use such a delay for a
computation of an enhanced adaptive pacing rate.
B Rate-based Congestion Control

Several researchers identified the interaction of TCP with the
underlying routing and link layers as the key factor for the poor
performance of TCP in IEEE 802.11 multihop wireless networks.
If we neglect mobility-related problems of TCP in such networks
[16], most important deficiencies of TCP arise from TCP’s con-
gestion control algorithm. First, TCP’s window-based congestion
control leads to packet bursts when received acknowledgments
trigger the transmission of several data packets, e.g., when receiv-

ing a cumulative ACK. Due to the spatial reuse constraint of the
wireless channel in IEEE 802.11 multihop wireless networks,
concurrent nodes in a chain cannot transmit simultaneously with-
out causing collisions. Thus, packet bursts result in increased con-
tention on the wireless channel. This link layer contention may
lead to packet drops due to the hidden and exposed terminal prob-
lems [10] [13]. Second, TCP’s congestion control algorithm relies
on packet losses as indication of congestion and, thus, provokes
losses in order to identify spare bandwidth. In IEEE 802.11 multi-
hop wireless networks, this behavior results in increased conges-
tion, causing significant performance degradation for TCP [13].
Recall that network congestion often triggers (false) route failures,
even in static wireless networks, since the routing protocol cannot
distinguish between a packet loss due to congestion and a packet
loss due to a broken route.

To overcome both deficiencies stated above while preserving
the TCP compatibility, our protocol TCP-AP incorporates a rate-
based transmission algorithm into TCP’s window-based conges-
tion control. The problem of packet bursts is solved by spreading
the transmission of successive data packets according to the com-
puted transmission rate, which accounts for the spatial reuse con-
straint in IEEE 802.11 multihop wireless networks. Furthermore,
by proactively identifying incipient congestion, i.e. before conges-
tion-related losses actually occur, TCP-AP is able to adjust the
transmission rate and, hence, reduce contention at link layer. In
contrast to TCP Pacing for the Internet [23], where the transmis-
sion of a window of packets is evenly spread over the duration of
a round trip time (RTT), our approach schedules the transmission
of packets based on both the size of the congestion window and
the computed transmission rate. As long as the size of the conges-
tion window is larger than the number of packets in flight, new
packets are scheduled for transmission according to the current
transmission rate.

C Identification of Incipient Congestion
Due to its end-to-end semantics, TCP’s congestion control al-

gorithm is based on the measurement of round trip times (RTT)
and packet loss. In fact, in current TCP variants such as Reno and
NewReno, the actual identification of congestion is solely laid
upon the observation of packet loss. Therefore, standard TCP
increases the load issued into the network until a packet loss is
detected, where such a packet loss identifies congestion.

TCP-AP incorporates a congestion control algorithm which
identifies high contention on the network path of the TCP connec-
tion, and proactively throttles the transmission rate before losses
occur. That is, as congestion increases, the variance of round trip
times increases correspondently, indicating high link contention.
Hence, TCP-AP uses the coefficient of variation of recently
measured round trip times, covRTT, as key measure for the degree
of the contention on the network path. This measure is given by:

2

1

1 ()
1

N

i
i

RTT

RTT RTT
Ncov

RTT

=

−
−

=
∑

 (1)

Here, N is the number of considered RTT samples, RTT is the
mean of the samples, and RTTi denotes the value of the i-th RTT

sample. The coefficient of variation covRTT can be obtained purely
end-to-end without provoking congestion or packet losses.

D The Spatial Reuse Constraint
Besides the measure of contention on the network path, TCP-

AP also accounts for the spatial reuse constraint of IEEE 802.11
multihop wireless networks. That is, due to the hidden terminal
effect and the absence of perfect scheduling at link layer, concur-
rent nodes in a chain cannot transmit simultaneously without
causing collisions. A crucial factor that has a significant impact on
the spatial reuse constraint of a multihop wireless network is the
carrier sensing range of wireless nodes. Physical carrier sensing is
a mechanism incorporated in IEEE 802.11 [28], by which a wire-
less node senses the medium before it transmits a packet. Only if
the sensed signal power is below a certain threshold, denoted as
carrier sense threshold Tcs , does the node initiate a transmission.
As the radio signal of a node attenuates with the distance, the
range in which the node can sense the transmission of another
node is limited. The carrier sensing range defines the range in
which the current transmission of a node can be sensed by other
nodes. The key role of the carrier sensing range lies in determin-
ing which hops on a chain of nodes are prone to be potential hid-
den terminals. That is, nodes which operate beyond each other's
carrier sensing range on a chain comprise mutual hidden termin-
als. Thus, the transmission of each of the nodes cannot be sensed
by the other node, respectively, resulting increased collision at
link layer. Fig. 2 shows a chain of 8 nodes. Assume a TCP con-
nection is running between node 1 as a TCP source and node 8 as
a TCP destination. In this chain, nodes 1 and 4 comprise mutual
hidden terminals, since both nodes operate beyond each other's
carrier sensing ranges. In this case, node 4 cannot sense the
transmission from node 1 to node 2 and thus may transmit packets
to node 5, resulting collisions with the ongoing transmission be-
tween nodes 1 and 2.

From the point of view of the TCP source, i.e. node 1, the first
node which is positioned right at the border of its carrier sensing
range, node 4 in this case, is the first node that comprises a poten-
tial hidden terminal. This means that collisions can be avoided if
node 1 defers its transmission until node 4 finishes its transmis-
sion to node 5. Note that which node comprises the hidden ter-
minal is mainly determined by the carrier sensing range and does
not have to be the 4th node on the chain as given in Fig. 2. This
means that the hidden terminal varies with varying carrier sensing
range. Let node i be the TCP source node and node (i+x), x ≥ 2, be
the hidden terminal to node i. We refer to the time elapsed be-
tween transmitting a TCP packet by the TCP source node i and
receiving the packet at node (i+x+1) as the out-of-interference
delay (OID).

4 6 81 2 73 5

Interference range
& sensing range of
node 4

Transmission range
of node 4

Interference range
& sensing range of
node 1

Transmission range
of node 1

44 66 8811 22 7733 55

Interference range
& sensing range of
node 4

Transmission range
of node 4

Interference range
& sensing range of
node 1

Transmission range
of node 1

Fig. 2: Spatial reuse constraint: Hidden terminals in a chain are depen-

dent on current carrier sensing range

The challenge is to approximate OID by determining the hid-
den terminal for the TCP source node. In order to identify the
hidden terminal for the TCP source node, we have to determine
the carrier sensing range in terms of number of hops. The next
node right at the border of the carrier sensing range comprises the
potential hidden terminal. Subsequently, we introduce the Adap-
tive Out-of-Interference Delay approach, which incorporates an
effective way for estimating the carrier sensing range of the TCP
source node and approximating the out-of-interference delay ac-
cordingly.

E The Adaptive Out-of-Interference Delay Approach
The main challenge in approximating the carrier sensing range

of the TCP source node lies in the lack of fundamental informa-
tion such as transmission range and distances between nodes.
Such information can be easily inquired in simulations, but are
very hard, sometimes even impossible, to determine in real life.
As we set the preservation of the end-to-end semantics of TCP as
a strict design goal, we introduce an approach for approximating
the carrier sensing range purely end-to-end without any support
from intermediate nodes. All parameters needed for estimating the
carrier sensing range are available at the TCP source node and can
be inquired from the IEEE 802.11 driver.

We approximate the carrier sensing range in terms of number
of hops, not in meters, by estimating how many hops it takes for
the transmission signal of the TCP source node to get attenuated
such that it falls below the carrier sensing threshold Tcs. That is,
the first hop that comes after the threshold Tcs is undercut is a po-
tential hidden terminal for the TCP source node.

The first step towards estimating the carrier sensing range in
terms of number of hops is to estimate the signal attenuation for
the first hop on the path from TCP source to TCP destination. Let
Pout be the actual outgoing signal power of the TCP source node.
Following the Equivalent Isotropically Radiated Power (EIRP)
[21] equation we get:

out tx ant cab vP P G A A= + − − (2)

where Ptx denotes the transmission power of the wireless NIC
at the source node, Gant denotes the signal gain of the mini anten-
na, and Acab and Av describe the signal attenuation caused by the
coaxial cable and the variable attenuator, respectively. The para-
meters Acab and Av only correspond to the deployed testbed and
are set to zero if no cables and/or no hardware attenuators are used
in the multihop wireless network. The signal attenuation for the
first hop, L1, is given by the difference between the received pow-
er Prx at the second node in the chain and the outgoing signal
power from the TCP source node, i.e. first node in the chain, Pout:
 1 out rxL P P= − (3)

The received power Prx can be easily inquired from the IEEE
802.11 driver at the source node using the Received Signal
Strength Indication mechanism (RSSI) [28]. The next step is to
derive an equation for estimating the signal attenuation for an
arbitrary number of hops, n. Such an equation shall approximate
the signal attenuation of the TCP source node at nodes which are
n hops away from the source node. The signal attenuation equa-
tion as described by the ITU-R indoor propagation model [21] is

given by
 10 1020 log () 10 log ()cL f p d= + (4)
where fc denotes the frequency of the transmitted signal, i.e. a
channel in the 2.4 GHz band in our case, p denotes the path loss
exponent, and d describes the distance between transmitter and
receiver in meters. The path loss exponent p depends on the oper-
ating environment of the wireless nodes and ranges from 2 for
propagation in free space up to 5 in dense indoor environments.
Due to findings from extensive measurements in our testbed and
following [21], we set p = 3.

Let d1 be the distance of the first hop in the chain, i.e. between
the TCP source node and the second node, then we get according
to Eq. 4:
 1 10 10 120 log () 10 log ()cL f p d= + (5)

It holds that 11

n
ii

d d n δ
=

= +∑ , where d determines the deviation
between the distance d1n and the actual distance of the first n
hops. For the signal attenuation of the TCP source node after n
hops, Ln, we get:

10 10 1

10 10 1

10 10 1 10 10
1

1 10 10
1

1 10

20 log () 10 log ()

20log () 10 log ()

20log () 10 log () log () log 1

10 log () 10 log 1

10 log ()

=
= +

= + +

  
= + + + +     

 
= + + + 

 
= + +

∑ n
n c ii

c

c

L f p d

f p d n

f p d n
d n

L p n p
d n

L p n

δ

δ

δ

ε (6)
where ε describes the approximation error, which is determined

by d. Since ε is a logarithmic factor, its ratio to the overall attenua-
tion Ln diminishes with increasing distance.

Nevertheless, in a real large-scale mesh network, 1

n
ii

d
=∑ may

well be determined more accurately, either by deploying localiza-
tion techniques in IEEE 802.11 [28], or by using GPS localiza-
tion. In case such localization information are available at the
TCP source, an even more accurate approximation of Ln may be
achieved.

Finally, we can derive the carrier sensing range Hcs in terms of
number of hops for an h-hop chain:
 { }min | {1,2,..., }cs out k csH k k h P L T= ∈ ∧ − < (7)

In other words, Hcs is the smallest number of hops k for which
the actually sensed power of the TCP source node (i.e. Pout - Lk) is
below the carrier sensing threshold Tcs. This implies that (Hcs + 1)
is the first node in the chain which cannot sense the transmission
of the TCP source and thus comprises a potential hidden terminal.

By means of the estimated carrier sensing range Hcs as well as
RTT measurements at the TCP source, the out-of-interference
delay OID of TCP data packets can be derived. The RTT is com-
posed of the sum of the delay experienced by the data packet on
the way from TCP source to TCP destination and the delay expe-
rienced by the ACK packet sent from the TCP destination to the
TCP source. Each of these delays comprises the time to forward
the packet over h hops, where each forwarding requires a queuing
delay tq and transmission delays tdata, and tACK, respectively. The
parameters involved in the estimation of the out-of-interference
delay are given in Table II. Using the measured RTT, we get:

() ()q data LLD q ACK LLARTT h t t t h t t t= + + + + + (8)

Here, tLLD and tLLA denote the average link layer delay required
for transmitting the TCP data packet and the TCP ACK packet,
respectively. This delay comprises the transmission time of IEEE
802.11 control packets, link layer backoff, and potential retrans-
missions at link layer. Since information on link layer backoff and
retransmissions on the path are not available at the TCP source
node, we approximate tLLD and tLLA by defining the corresponding
upper and lower bounds:

3 dataLL LL
LLD cur slot

base base

sACK ACKt cw t
b b b

 ≤ ≤ + + ⋅ 
 

 (9)

and

3 ACKLL LL
LLA cur slot

base base

sACK ACKt cw t
b b b

 ≤ ≤ + + ⋅ 
 

 (10)

The lower bounds apply when the TCP packet (data or ACK)
can be delivered with no retransmissions. The upper bounds cor-
respond to the case when it takes the maximum number of re-
transmissions to deliver the TCP packet. According to the IEEE
specifications [28], by default, a total of 4 attempts (i.e. 3 retrans-
missions) are distinguished at link layer before the packet is
dropped (short retry limit). We omit the DIFS and SIFS intervals
[28] due to their negligible sizes. We consider the case with
RTS/CTS deactivated. In case RTS/CTS is activated, the corres-
ponding transmission times of the RTS and CTS packets at a
bandwidth of bbase are considered in Eqs. 9 and 10. Assuming a
data bandwidth b of 11Mbit/s and considering the corresponding
values for the link layer parameters in Eqs. 9 and 10 as given by
the IEEE specifications [28], we get:

 0.11 7.72LLDms t ms≤ ≤ (11)
and
 0.11 4.60LLAms t ms≤ ≤ (12)

By setting tLLD = 3.9ms and tLLA = 2.4ms as average values we
get an approximation error of at maximum 3.8ms and 2.2ms, re-
spectively. For a typical wireless RTT of 60ms to 70ms at
11Mbit/s, this makes up an approximation error of 3%-6% at
maximum. Note that the approximation can be easily computed
for arbitrary values for b, which can be inquired directly from the
wireless NIC driver.

Solving for tq in Eq. 8 while using tdata = sdata/b and tACK =
sACK/b, we derive the average queuing delay as:

 1
2

data ACK
q LLD LLA

s sRTTt t t
h b

+ = − − − 
 

 (13)

Subsequently, we can estimate the out-of-interference delay of
the TCP data packet:

 ()1 data
cs q

s
OID H t

b
 = + + 
 

 (14)

The number of hops h on the network path to the receiver and
the bandwidth b of the wireless network interface can be easily
inquired without extra overhead from the kernel routing table and
the IEEE 802.11 driver, respectively.

In theory, the maximum spatial reuse with minimum collisions
can be achieved with a transmission rate Rmax=1/OID. In fact, this

TABLE II: PARAMETERS FOR THE ADAPTIVE COMPUTATION
OF THE TRANSMISSION RATE

Parameter Meaning
L1 Signal attenuation of the TCP source node after

1 hop
Ln Signal attenuation of the TCP source node after

n hops
fc Frequency of the transmitted signal

Hcs The carrier sensing range in terms of number
of hops

h Number of hops from sender to receiver
b Bandwidth for transmission of data packets

bbase
Base bandwidth for transmission of IEEE
802.11 control packets (1 Mbit/s)

tq Average packet queuing delay per node
tslot IEEE 802.11 slot time (20 microseconds)

sdata
Size of TCP data packet (incl. link layer
overhead)

sACK Size of TCP ACK packet (incl. link layer
overhead)

tdata Transmission time for TCP data packet
tACK Transmission time for TCP ACK packet

tLLD Average link layer delay for transmitting a
TCP data packet

tLLA Average link layer delay for transmitting a
TCP ACK packet

ACKLL Size of link layer ACK (14 bytes)

cwcur
Current size of IEEE 802.11 contention win-
dow

RTT Current round trip time of TCP packets
covRTT Coefficient of variation of RTT samples
OID Current sample of out-of-interference delay
OID EWMA of out-of-interference delay

transmission rate reflects the upper bound of the bandwidth-delay
product for IEEE 802.11 multihop wireless networks. Following
[10], an upper bound for the capacity of a path with h hops in an
IEEE 802.11 multihop wireless network is given by h/(Hcs + 1)
packets. Let Tone-way denote the time a packet traverses from the
sender to the receiver. This quantity can be computed as

()/ 1one way csT OID h H− = ⋅ + . Subsequently, the number of pack-
ets in flight on the way from the TCP source to the TCP destina-
tion with a transmission rate of Rmax is given by:

()
1

1max one way
cs

P R T h
H−= ⋅ =

+
 (15)

Thus, the number of packets in flight P transmitted with the
maximum transmission rate Rmax reflects the maximum capacity
of the network path.

F Deriving the Adaptive Pacing Rate
Since the computation of the adaptive transmission rate should

account for both the current contention on the network path and
the spatial reuse constraint, TCP-AP incorporates covRTT and OID
in the transmission rate formula. Recall that a rate of Rmax=1/OID
specifies an upper bound for the achievable goodput under theo-

retically optimal conditions, i.e. with perfect scheduling and no
contention. In order to adaptively throttle the transmission rate R
according to the current degree of contention, we use covRTT as
additional decay factor:



1
(1 2)RTT

R
OID cov

=
⋅ +

 (16)

The factor OID ⋅ (1+2covRTT) describes the delay between suc-
cessive packet transmissions at the TCP source (in milliseconds).
Consequently, the transmission rate is 1/  (1 2)RTTOID cov⋅ + (i.e. one
packet each OID ⋅ (1+2covRTT) milliseconds). The coefficient of
variation quantifies the percentage of sample deviation from the
mean. However, since we want to quantify the size of the spec-
trum in which the samples fluctuate around the mean, we double
the value covRTT in the rate formula.

Note that in favor of a stable transmission rate, we have to av-
erage the measured out-of-interference delay samples and employ
a reasonable history size N for the computation of the coefficient
of variation. Recall that N denotes the number of the most recent
samples used for determining covRTT. For averaging the out-of-
interference delay samples, we use the exponentially weighted
moving average (EWMA) with averaging weight α.

That is:
   (1)oldOID OID OIDα α= ⋅ + − ⋅ (17)

As given in [10], suitable values for the EWMA weight α and
the history size N are 0.7 and 50, respectively.

It is noteworthy that signal attenuation on some links in a chain
may be either higher or lower than other intermediate links. This
is due to sporadic, spatial-dependent interference that may occur
on certain links as a result of nodes in the vicinity or other disturb-
ing devices operating in the 2.4 GHz ISM band. Such sporadic
interference may decrease the estimation accuracy of Ln described
in Eq. 6, since the signal attenuation is not similar for all links.
Such inaccuracy may result in either a more conservative estima-
tion or a more optimistic estimation of OID. In case of a conserva-
tive estimation of OID, there would be no increased collisions due
to hidden terminals since the TCP source node defers its transmis-
sion until previously sent packets are forwarded by its potential
hidden terminal. However, due to the conservative estimation of
OID, and according to Eq. 16, a potential slight decrease in the
pacing rate may occur. On the other hand, in case of a more opti-
mistic estimation of OID, collisions with hidden terminals may
occur. However, such collisions would be implicitly reflected in
the derived coefficient of variation covRTT, which would increase
due to the increased RTT fluctuation. Thus, according to Eq. 16,
the increased collisions would be compensated by an automatic
adjustment of the pacing rate, which would consequently decrease
collisions at link layer. In Section V we show that such sporadic
effects have a negligible impact on the performance of TCP-AP.

G The refined TCP-AP Algorithm
In order to give intuition on how to implement the refined

TCP-AP algorithm, we present the pseudo code in Fig. 3.

Key variables:
Hcs: Carrier sensing range in terms of # hops
InterPacketDelay: Time between successive packet transmissions
OID: Out-of-Interference Delay
seqno: Current TCP sequence number
highestACK: Sequence number of last ACK received
awnd: Receiver advertised window size
cwnd: Congestion window size
covRTT Coefficient of variation of RTT

Utility functions:
recv(): Function called upon ACK receipt
pacing_timeout(InterPacketDelay): Function called every InterPacketDelay time
estimate_Hcs: Function called to estimate the current
 carrier sensing range in
 terms of # hops

Algorithm:
function recv() {
 for each received ACK do
 Hcs = estimate_Hcs()

 calculate covRTT over most recent N RTT
 samples
 InterPacketDelay:=
 done
}

function estimate_Hcs() {

 return Hcs
}

function pacing_timeout(InterPacketDelay) {
 if seqno ≤ highestACK + min(awnd, cwnd) then
 send new packet
 else
 stay idle
 endif
}

Fig. 3: Pseudo code of refined TCP-AP algorithm

H The TCP Framework Implementation for Linux
In order to evaluate our adaptive pacing approach, we imple-

mented a user-space framework for TCP in Linux, in which we
incorporated TCP-AP as well as the widely deployed variant TCP
NewReno. The framework communicates directly with the net-
work layer in Linux. This is made possible by using raw IP sock-
ets, which only add IP and MAC headers to the packets by de-
fault. The TCP header is constructed and included by the frame-
work. The user interacts with the traffic generator and provides
numerous parameters such as TCP destination, number of bytes to
be transmitted, and employed TCP variant. The implementation
of the TCP framework has a modular hierarchy and thus supports
expansions with further TCP flavors.

TCP-AP builds on TCP NewReno without changing any of its
internal congestion control dynamics. Slow start, congestion
avoidance, fast retransmit, and fast recovery are all kept un-
changed to ensure the friendliness to other TCP flavors. The main
aspect that is modified in the implementation is the transmission
of TCP packets, which is performed rate-based within the conges-
tion window. Specifically, TCP packets within the current

Fig. 4: Interaction between the TCP framework implementation and
lower layers as well as the class hierarchy of the TCP framework

congestion window are placed in a queue which schedules its
transmission time according to the current adaptive pacing rate.

For computing the adaptive pacing rate accurately, TCP-AP re-
quires fine grained timers. Unfortunately, the standard POSIX
timers available in the Linux user space suffer from low accuracy,
resulting up to 20 milliseconds timer-jitter. Thus, we integrated
the high-resolution timer subsystem [15] into the Linux kernel,
which provides a high accuracy in the order of nanoseconds.

The TCP-AP implementation within the framework requires no
modifications of underlying layers. The number of hops h re-
quired for the calculation of the pacing rate is acquired from the
kernel routing table using default Linux APIs, whereas the link-
layer parameters needed are acquired from the IEEE 802.11 driver
using default I/O control requests. This makes TCP-AP incremen-
tally deployable, since it works directly with off-the-shelf multi-
hop routing protocols as well as IEEE 802.11 link-layer drivers.

V. PERFORMANCE EVALUATION
We present a comprehensive performance study of TCP-AP

versus the widely deployed TCP NewReno by means of our mi-
niaturized wireless mesh testbed. In all experiments, except for
experiments showing transient behavior, we conduct steady-state
simulations starting with an initially idle system. In each run, we
activate TCP connections until 55,000 packets are successfully
transmitted, and split the output of the experiment in 11 batches,
each 5,000 packets in size. The first batch is discarded as initial
transient. The considered performance measures are derived from
the remaining 10 batches with 95% confidence intervals by the
batch means method.

For all experiments, we set the TCP packet size to 1,460 bytes
and the TCP receiver's advertised window to 64 packets. We set
the IEEE 802.11 data rate to 11 Mbit/s and the attenuation level of
the variable attenuators to 16 dB, unless otherwise stated. This
provides a transmission range of roughly 0.5m.

A FTP-like Traffic
In the first set of experiments, we consider scenarios with FTP-

like, bulky data transfer in different network topologies. That is,
the TCP source transmits packets continuously, representing a

large file transfer.

Chain Topology
The first topology we consider is an equally spaced chain com-

prising h+1 nodes (h hops) with a single flow, as depicted in Fig.
5. TCP packets traverse along the chain from the leftmost node
(i.e., the source) to the rightmost node (i.e., the destination).
Nodes in the chain are positioned such that only direct neighbors
can communicate with each other over one hop.

First, we validate the TCP NewReno implementation of our
Linux TCP framework. We do so by comparing the goodput
achieved by our user-space TCP NewReno to the Linux kernel
TCP using the Iperf measurement tool [29]. Table III shows the
goodput of each variant for varying number of hops between TCP
source and TCP destination. The goodput is averaged over 40
runs, where each run comprises 10 batches. We omit the confi-
dence intervals since they only make up 2% of the corresponding
goodput value, at maximum.

In Table III we see that the values of both user-space TCP Ne-
wReno and Linux kernel TCP are almost identical. The Linux
kernel TCP slightly outperforms user-space TCP by about 1% due
to the typical lower jitter and CPU time of kernel-space imple-
mentations compared to user-space implementations.

In order to evaluate TCP-AP versus TCP NewReno in a variety
of different network conditions, we vary network-related parame-
ters to reflect typical real world settings. For one, we consider the
goodput of TCP-AP and TCP NewReno with and without the
RTS/CTS handshake. Furthermore, we set the attenuation level of
the variable attenuators such that the signal between nodes is ei-
ther optimal (at low attenuation level) or very weak (at high atten-
uation level). Such a high attenuation level and/or weak inter-node
signal often occurs in real multihop wireless networks, in cases
where either links between nodes suffer from high external inter-
ference or the distance between nodes is considerably large.

Fig. 5: 9-hop chain topology with a single flow

TABLE III: AVERAGE GOODPUT OF USER-SPACE TCP NEWRENO VS.
LINUX KERNEL TCP

Number of
Hops

Avg. Goodput of
User-space TCP

NewReno [Kbit/s]

Avg. Goodput of
Linux Kernel TCP

[Kbit/s]

1 5588 5671
2 2750 2843
3 962 981
4 709 722
5 748 761
6 903 919
7 773 783
8 722 731
9 657 672

Fig. 6: Goodput vs. number of hops without RTS/CTS and with low

signal attenuation (16 dB)

Fig. 8: Goodput vs. number of hops without RTS/CTS and with high

signal attenuation (29 dB)

Fig. 10: NS-2: Goodput vs. number of hops without RTS/CTS

Fig. 7: Goodput vs. number of hops with RTS/CTS and with low signal

attenuation (16 dB)

Fig. 9: Goodput vs. number of hops with RTS/CTS and with high signal

attenuation (29 dB)

Fig. 11: NS-2: Goodput vs. number of hops with RTS/CTS

Figures 6 to 9 show the results of this experiment, plotted as
goodput versus number of hops between TCP source and TCP
destination. In Fig. 6, where RTS/CTS is disabled and the signal
between nodes is optimal, TCP-AP outperforms TCP NewReno
by up to 113%. In case RTS/CTS is enabled, as shown in Fig. 7,
TCP-AP has only a slight increase in goodput up to 6 hops. At a
chain length of 7 to 9 hops, TCP NewReno achieves more good-
put than TCP-AP. This is due to that fact that with RTS/CTS acti-
vated, the number of hidden terminals in a chain significantly

decreases, resulting in an increased goodput for TCP NewReno,
which suffers at most from hidden terminal effects. However,
when comparing Fig. 6 with Fig. 7, we can state that the
RTS/CTS overhead reduces the goodput achieved by TCP-AP up
to almost 50% as well as the goodput of TCP NewReno for 1 to 3
hops. This is consistent with previous studies such as [3] and [14],
which have shown that RTS/CTS degrades goodput significantly.

The previous findings are consistent with the results of Figures
8 and 9, in which the signal between nodes is very weak due to

the high attenuation level. Comparing both figures, we observe
that RTS/CTS also results in a significant degradation in goodput.
Furthermore, we see that TCP-AP achieves up to ten times more
goodput than TCP NewReno. That is, in such an environment
where the signal between nodes is not optimal, the aggressive
transmission of TCP NewReno greatly overwhelms the channel,
resulting in a severe packet loss rate. On the other hand, the adap-
tive pacing approach of TCP-AP adjusts the transmission rate
according to the current state of the channel, reducing packet loss,
and thus achieving more goodput. As the signal between nodes is
at its lower limit, it does not suffice for delivering packets suc-
cessfully for a chain of 7 to 9 hops.

To compare the results acquired from the TCP implementations
in the testbed with the TCP implementations in the network simu-
lator ns-2 [12], we conduct a simulation study in ns-2, where we
examine the goodput of TCP NewReno versus TCP-AP for vary-
ing number of hops. Figures 10 and 11 show the results of the
simulation with and without RTS/CTS, respectively. When com-
paring Fig. 6 with Fig. 10, we notice that although the improve-
ment of TCP-AP with respect to TCP NewReno is very similar,
the number of hops at which such improvement is at its maximum
varies. While the largest gap between TCP-AP and TCP NewRe-
no lies at 4 hops for the testbed experiment (Fig. 6), it lies at 7
hops in the simulation (Fig. 10). The reason for such shift in the
number of hops is that in ns-2, the out-of-interference delay only
corresponds to a fixed ratio between transmission range and carri-
er sensing/interference range, which is equal to 250m/550m. In
the testbed, such a delay is variable and is not bound to a specific
number, which is considered by the refined implementation of
TCP-AP in the testbed. Thus, as positions of hidden terminals
vary in the simulation with respect to the testbed, the number of
hops at which TCP-AP achieves its best goodput compared to
TCP NewReno also varies. Consistent with Fig. 7, Fig. 11 shows
that the RTS/CTS handshake decreases TCP goodput due to the
higher overhead associated with it.

In a further experiment, we evaluate the fairness between com-
peting flows when employing TCP-AP versus TCP NewReno. As
depicted in Fig. 12, two competing TCP flows run from both ends
of a 6-hop chain, i.e. nodes 1 and 6, to the middle node 4. This
emulates the case in which some node in a mesh network wishes
to download two files from two different nodes simultaneously.

Figures 13 and 14 show the goodput of each of the two flows
evolving over time for TCP-AP and TCP NewReno, respectively.
In Fig. 13, we observe how both flows share the available band-
width equally when employing TCP-AP. In contrast, in Fig. 14,
we see that TCP NewReno results in almost a complete starvation
of flow 2 due to its aggressive transmission. That is, since IEEE
802.11 favors aggressive flows over less aggressive ones, the flow
which succeeds to acquire the channel first, i.e. flow 1 in this case,
also succeeds to take control of the channel until the end of its
transmission. On the contrary, TCP-AP adjusts its adaptive pacing
rate such that multiple flows share the bandwidth equally. The
component of the adaptive pacing rate of TCP-AP which is re-
sponsible for maintaining inter-flow fairness is the coefficient of
variation covRTT. As given in Eq. 16, this factor throttles the adap-
tive pacing rate proportional to the current interference caused by
other flows, and thus prevents one or more flows from starving.

As flows in this experiment mutually impose a nearly equal de-
gree of interference, their corresponding adaptive pacing rate is
also nearly equal. Hence, the bandwidth is distributed fairly
among both flows.

Fig. 15 shows the goodput of both TCP flows as well as the
aggregate goodput achieved throughout the experiment. Consis-
tent with the previous results, TCP-AP achieves almost optimal
fairness between the flows, while TCP NewReno favors flow 1 at
cost of flow 2. We notice that TCP NewReno achieves slightly
more aggregate goodput than TCP-AP, which is due to the known
trade-off between aggregate goodput and fairness caused by the
absence of optimal scheduling of the IEEE 802.11 link layer pro-
tocol [10] [24].

In a third experiment, we evaluate the responsiveness of
TCP-AP versus TCP NewReno. As responsiveness we denote
how quickly the congestion control algorithm adapts to chang-
ing network conditions such as additional flows competing for
the bandwidth. We re-conduct the previous experiment with
the two competing flows, however, with different start and
stop times of the considered flows. Specifically, we let flow 1
run from the beginning to the end of the experiment, i.e. until
the 40th second. Flow 2 starts at the 10th second of the expe-
riment and stops at the 30th second. We then investigate how
flow 1 reacts upon the activation of flow 2. Figures 16

Fig. 12: Parallel download: Competing TCP flows

Fig. 13: Fairness of TCP-AP: Goodput vs. time

Fig. 14: Fairness of TCP NewReno: Goodput vs. time

Fig. 15: Goodput and fairness of the competing TCP flows

Fig. 16: Responsiveness of TCP-AP: Goodput vs. time

Fig. 17: Responsiveness of TCP NewReno: Goodput vs. time

and 17 show the results of this experiment. We notice that, em-
ploying TCP-AP, flow 1 utilizes the available bandwidth when
there is no competing flow and shares the bandwidth fairly when
both flows compete for the channel. On the contrary, due to the
aggressiveness of TCP NewReno, flow 1 acquires the entire
bandwidth available throughout the experiment time, resulting in
a complete starvation of flow 2.

Parallel Chains Topology
In this experiment, we consider a topology of two 4-hop sym-

metric parallel chains, as depicted in Fig. 18. The chains lie

beyond each other's transmission range, but within each other's
interference range. We run one TCP flow on each chain and in-
vestigate the achieved goodput of each flow as well as the aggre-
gate goodput, i.e. the sum of the goodput achieved by both flows.

Figures 19 to 22 show the results of this experiment. In Fig. 19,
we observe how TCP-AP achieves to share the goodput equally
among both flows, whereas TCP NewReno penalizes flow 1 in
favor of flow 2. Moreover, TCP-AP achieves around 75% more
aggregate goodput than TCP NewReno. Figures 20 and 21 show
the transient behavior of both flows during the first 20 seconds of
the experiment. The figures show the sequence numbers of TCP
packets received at the TCP destination for TCP-AP and TCP
NewReno, respectively. In Fig. 20 we notice that the growth in
the sequence numbers has a similar slope for both flows, indicat-
ing that the bandwidth is shared equally among them. In contrast,
in case of TCP NewReno, flow 2 acquires most of the bandwidth
as its sequence numbers increase steeply, while the sequence
number growth of flow 1 stagnates. This indicates a high TCP
packet loss rate and multiple TCP timeouts for flow 1 in favor of
flow 2.

Fig. 18: Parallel chains topology

Fig. 19: Goodput and fairness for the parallel chains topology

Fig. 20: TCP-AP: Sequence numbers of TCP packets received at TCP

destination

Fig. 21: TCP NewReno: Sequence numbers of TCP packets received

at TCP destination

Fig. 22: TCP-AP: Coefficient of Variation of RTT

Fig. 22 shows the coefficient of variation of RTTs, plotted over
time for both TCP-AP flows. It is obvious that the gradient of the
coefficient of variation is similar for both flows. This implies that
both flows experience similar RTT fluctuation, and thus transmit
at a similar pacing rate, which is consistent with the fairness re-
sults shown in Fig. 21.

Random Topologies
Random node topologies are typically found in community

mesh networks such as [3] and are widely deployed in reality. We
evaluate TCP-AP and TCP NewReno in such topologies by con-
sidering random placements of the testbed's 20 antenna-stations.
The 20 antenna-stations are distributed uniformly on a flat area of
2m x 3m such that full connectivity between each pair in the net-
work over one or more hops is granted. In addition to the batch
means method described earlier, and in order to achieve optimal
results in terms of representativeness, we consider 20 replicates
when deriving performance measures. Each replicate corresponds
to a different random placement of the nodes.

Fig. 23 shows the cumulative distribution function (CDF) of
goodput between each pair in the network for TCP-AP versus
TCP NewReno over all considered 20 random node placements.
The higher slope of NewReno's CDF for low goodput values (i.e.
0 to 2000 Kbit/s) and lower slope for high goodput values (i.e.
4000 Kbit/s to 6000 Kbit/s) indicate that employing TCP-AP
yields more goodput than TCP NewReno. Specifically,

Fig. 23: Cumulative distribution function (CDF) of goodput between

each pair in the network (Average goodput: TCP NewReno: 875 Kbit/s,
TCP-AP: 1123 Kbit/s. Median goodput: TCP NewReno: 847 Kbit/s,

TCP-AP: 1413 Kbit/s)

Fig. 24: Goodput of five parallel flows running between five randomly

chosen pairs
the average goodput of TCP NewReno constitutes 875 Kbit/s,
whereas the average goodput of TCP-AP makes up 1123 Kbit/s,
i.e. around 28% more goodput than TCP NewReno. As for the
median goodput, TCP NewReno achieves only 847 Kbit/s while
TCP-AP achieves 1413 Kbit/s, i.e. around 67% improvement in
goodput.

In Fig. 24 we consider a representative sample of the 20 repli-
cate-topologies, in which we run five parallel TCP flows between
five randomly chosen pairs. We plot the individual goodput of
each flow as well as the aggregate goodput both for TCP-AP and
TCP NewReno accordingly. We observe how TCP NewReno lets
flow 2 acquire most of the available bandwidth at cost of the other
flows, while letting flows 4 and 5 almost completely starve. In
contrast, TCP-AP prevents the starving of any flow by dividing
the available bandwidth more fairly among flows, while achieving
about 46% more aggregate goodput than TCP NewReno.

The reason why flow 2 acquires most of the available band-
width is that it runs on a 2-hop chain, while other flows run on
chains with hops greater or equal 4. As a result of the IEEE
802.11 spatial reuse capacity limits, and as validated in Figures 6
to 11, the TCP goodput decreases with increasing number of
hops. This affects TCP NewReno more than TCP-AP since, as
discussed above, TCP NewReno does not throttle its rate accord-
ing to other flows in the vicinity. Thus, as the most aggressive
flow, flow 2 acquires most of the available bandwidth at the cost
of other flows.

B HTTP-like Traffic
In the second set of experiments, we consider variable length

flows, i.e. HTTP-like data transfer, where the TCP sender trans-
mits small files with variable pause times between successive file
transfers. Following [18], we assume that file sizes are Pareto
distributed with mean 30 Kbytes and shape factor β = 1.5, whe-
reas pause times between successive file transfers are exponential-
ly distributed. Figures in this section describe the behavior of the
considered TCP variants during HTTP ON-phases, in which the
contents of a webpage are typically downloaded.

We reconsider the random topologies in Section V.A and adopt
the same settings given, except using HTTP-like traffic instead of
FTP-like traffic to derive performance measures. Performance
measures in Figures 25 and 26 are derived as an average over
each five-pair set in the network, where each set contains five
simultaneously active HTTP connections. In Fig. 27 we consider
five concurrent HTTP connections running between five random-
ly chosen pairs, whereas in Fig. 28 we consider one HTTP flow
between each pair in the network.

Fig. 25 shows the average download delay of the downloaded
files for varying mean of exponentially distributed pause times for
TCP NewReno and TCP-AP, respectively. The download delay
denotes the time needed for downloading the desired file. We
observe that for small pause times of 0.1s and 0.2s, TCP-AP re-
quires up to 51% less download delay than TCP NewReno. As
pause times between successive file transfers increase, the differ-
ence in download delay between TCP NewReno and TCP-AP
vanishes. That is, for pause times above 0.2s, the download delay
of TCP NewReno and TCP-AP is almost identical. Such behavior
is due to the traffic load in the network, which is high for small
pause times and decreases gradually as pause times increase.
Thus, since TCP-AP is superior to TCP NewReno at high net-
work load, which causes increased contention at link layer, TCP-
AP outperforms TCP NewReno for small pause times. As pause
times increase, contention in the network decreases and the differ-
ence in download delay between TCP-AP and TCP NewReno
becomes smaller.

We evaluate the fairness in this experiment by computing
Jain’s fairness index [17], which is defined as:

2

2

1 1
()

n n

i i
i i

F x x n x
= =

 
=  
 
∑ ∑ (18)

where n is the number of flows and xi denotes the goodput
achieved by flow i. The index ranges between 0 and 1. An index
of 1 corresponds to the best fairness achievable between compet-
ing flows whereas and index of 1/n denotes the case where a sin-
gle flow acquires the entire bandwidth available.

Fig. 26 shows Jain's fairness index of TCP NewReno and
TCP-AP for increasing pause times. Again, for small pause times,
i.e. 0.1s and 0.2s, TCP-AP achieves considerably better fairness
than TCP NewReno. As pause times increase, the fairness of TCP
NewReno improves until reaching the same level like TCP-AP.
Note that in such random topologies, an optimal fairness index of
1 is typically not achieved, since Jain's fairness index is only op-
timal when all considered flows have similar physical characteris-
tics. Such similarities include for instance running over the same
number of hops, which is typically not the case in random envi-
ronments.

Fig. 27 shows the average download delay of five concurrent
HTTP connections running between five randomly chosen pairs
with a mean for pause times between successive file transfers of
0.1s. Consistent with the previous results, TCP-AP achieves
around 25% less aggregate download delay than TCP NewReno,
while achieving better fairness between the competing HTTP
flows.

In Fig. 28, we plot the cumulative distribution function (CDF)
of download delay between each pair in the network. The higher
slope of TCP-AP's CDF for low download delays points out

Fig. 25: Average download delay vs. mean for pause times

Fig. 26: Jain's fairness index vs. mean for pause times

Fig. 27: Average download delay for five concurrent HTTP flows

Fig. 28: Cumulative distribution function (CDF) of download delay be-

tween each pair in the network (Average download delay: TCP
 NewReno: 1.26s, TCP-AP: 0.82s. Median download delay: TCP

 NewReno: 0.64s, TCP-AP: 0.5s)

that files are downloaded faster using TCP-AP than the case when
using TCP NewReno. Specifically, the average download delay of
TCP NewReno is 1.26s versus 0.82s for TCP-AP, whereas the
median download delay of TCP NewReno makes up 0.64s com-
pared to 0.5s for TCP-AP. This makes up 35% less average
download delay and 22% less median download delay for TCP-
AP compared to TCP NewReno.

VI. CONCLUSION
We introduced an effective end-to-end congestion control algo-

rithm for TCP in real multihop wireless networks. Our approach,
denoted as TCP with Adaptive Pacing (TCP-AP), employs rate-
based transmission within the current congestion window. By
adapting the transmission rate to the current network state, TCP-
AP reduces collisions at link layer, and thus achieves improved
goodput and fairness. Due to the TCP-compatibility of TCP-AP,
and since it relies solely on end-to-end measurements of round
trip times and requires no modifications at the routing layer or the
link layer, TCP-AP is easily deployable.

We implemented TCP-AP in Linux and validated its feasibility
in a specially built 20-node wireless mesh testbed. A comprehen-
sive performance study showed that, depending on the current
level of interference and signal attenuation, TCP-AP yields up to
ten times more goodput than TCP NewReno, while achieving
excellent fairness results. The acquired results indicate that the
gain of TCP-AP is particularly high for FTP-like traffic, where
contention at link layer is considerably heavy.

Currently, we are investigating the suitability of TCP-AP for
MIMO mesh networks, in particular for indoor mesh networks
adopting IEEE 802.11n technology. The acquired findings will
then be used to further calibrate the adaptive pacing algorithm for
the deployment in future large-scale outdoor mesh network scena-
rios. Such networks may require considering different signal at-
tenuation equations due to the different propagation characteris-
tics of the radio signal. Due to the modular design of the adaptive
pacing approach introduced in this paper, different path loss for-
mulas can be easily employed in the calculation of the out-of-
interference delay (OID).

REFERENCES
[1] G. Anastasi, E. Ancillotti, M. Conti and A. Passarella, Experimental Analysis of a

Transport Protocol for Ad hoc Networks (TPA), Proc. ACM PE-WASUN Work-
shop, Terromolinos, Spain, 2006.

[2] L. Andrew, S. Hanly, and R. Mukhtar, Active Queue Management for Fair Re-
source Allocation in Wireless Networks, IEEE Transactions on Mobile Computing,
Vol. 7 Issue 2, February 2008.

[3] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, Architecture and Evaluation of an
Unplanned 802.11b Mesh Network, Proc. ACM MOBICOM, Cologne, Germany,
2005.

[4] J. Camp, J. Robinson, C. Steger, and E. Knightly, Measurement Driven Deploy-
ment of a Two-Tier Urban Mesh Access Network, Proc. ACM MobiSys, Uppsala,
Sweden, 2006.

[5] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, TCP Westwood:
Bandwidth Estimation for Enhanced Transport over Wireless Links, Proc. ACM
MOBICOM, Rome, Italy, 2001.

[6] T. Clausen and P. Jacquet, Optimized Link State Routing Protocol, RFC 3626,
http://www.ietf.org/rfc/rfc3626.txt, October 2003.

[7] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, A High-Throughput Path Me-
tric for Multi-Hop Wireless Routing, Proc. ACM MOBICOM, San Diego, CA,
2003.

[8] P. De, A. Raniwala, R. Krishnan, K. Tatavarthi, J. Modi, N. Syed, S. Sharma, and T.
Chiueh, MiNT-m: an autonomous mobile wireless experimentation platform, Proc.
ACM MobiSys, Uppsala, Sweden, 2006.

[9] D. Koutsonikolas, J. Dyaberi, P. Garimella, S. Fahmy, and Y. Hu, On TCP
Throughput and Window Size in a Multihop Wireless Network Testbed, Proc.
ACM WinTech, Motreal, Canada, 2007.

[10] S. ElRakabawy, A. Klemm, and C. Lindemann, TCP with Adaptive Pacing for
Multihop Wireless Networks, Proc. ACM MobiHoc, Urbana-Champaign, IL,
2005.

[11] J. Eriksson, S. Agarwal, P. Bahl, and J. Padhye, Feasibility Study of Mesh Net-
works for All-wireless Offices, Proc. ACM MobiSys, 2006, Uppsala, Sweden

[12] K. Fall and K. Varadhan (Ed.), The ns-2 Manual, Technical Report, The VINT
Project, UC Berkeley, LBL, and Xerox PARC, 2007.

[13] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, The Impact of Multihop
Wireless Channel on TCP Performance, IEEE Transactions on Mobile Computing,
Vol. 4, Issue 2, March 2005.

[14] V. Gambiroza, B. Sadeghi, and E. Knightly, End-to-End Performance and Fairness
in Multihop Wireless Backhaul Networks, Proc. ACM MOBICOM, Philadelphia,
PA, 2004.

[15] T. Gleixner and D. Niehaus, Hrtimers and Beyond: Transforming the Linux Time
Subsystems, Proc. 8th OLS Linux Symposium, Ottawa, Canada, 2006 (Source code
available at http://www.tglx.de/projects/ktimers/).

[16] G. Holland and N. Vaidya: Analysis of TCP Performance over Mobile Ad Hoc
Networks, Wireless Networks, Vol. 8, Issue 2, 2002.

[17] R. Jain, D. Chiu, and W. Hawe, A Quantitative Measure of Fairness and Discrimi-
nation for Resource Allocation in Shared Systems, DEC Technical Report DEC-
TR-301, 1984.

[18] Y. Joo, V. Ribeiro, A. Feldmann, A.C. Gilbert, and W. Willinger, TCP Traffic Dy-
namics and Networks Performance: A Lesson in Workload Modeling, Flow Con-
trol, and Trace-driven Simulation, ACM SIGCOMM Computer Communication
Review, 31, 2001.

[19] V. Kawadia and P. R. Kumar, Experimental Investigations into TCP Performance
over Wireless Multihop Networks, Proc. ACM E-WIND, Philadelphia, PA, 2005.

[20] K. Nahm, A. Helmy, C. C. Kuo, TCP over Multihop 802.11 Networks: Issues and
Performance Enhancement, , Proc. ACM MobiHoc, Urbana-Champaign, IL, 2005.

[21] S. Saunders, Antennas and Propagation for Wireless Communication Systems,
Wiley & Sons, May 2007

[22] K. Sundaresan, V. Anantharaman, H-Y. Hsieh, R. Sivakumar, ATP: A Reliable
Transport Protocol for Ad Hoc Networks, Transactions on Mobile Computing, Vol.
4, Issue 6, November 2005

[23] D. Wai, P. Cao, and S. Low, TCP Pacing Revisited, Proc. IEEE INFOCOM, An-
chorage, AK, USA, 2007

[24] K. Xu, M. Gerla, L. Qi, and Y. Shu, TCP Unfairness in Ad Hoc Wireless Networks
and a Neighborhood RED Solution, Wireless Networks, Vol. 11, Issue 4, 2005.

[25] OLSR.ORG Implementation for Linux, http://www.olsr.org.
[26] Freifunk Mesh Community, http://start.freifunk.net/.
[27] The Qualnet Simulator, http://www.scalable-networks.com/.
[28] IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications, ISO/IEC 8802-11, August 1999.
[29] Iperf, the TCP/UDP Bandwidth Measurement Tool,

http://dast.nlanr.net/Projects/Iperf/.

http://www.tglx.de/projects/ktimers/patches-2.6.15-rc5-hrtimer.tar.bz2�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Holland:Gavin.html�
http://www.informatik.uni-trier.de/~ley/db/journals/winet/winet8.html#HollandV02�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Helmy:Ahmed.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kuo:C=_C=_Jay.html�

Sherif M. ElRakabawy received his PhD in com-
puter science from the University of Leipzig, Ger-
many in 2009, and his Diplom (MSc) in computer
science from the University of Bonn, Germany in
2003. In the summer of 2009, he was a visiting
researcher at the EECS department of the Univer-
sity of California at Berkeley, where he worked
with Professor Eric Brewer and the TIER group on
long-distance wireless technologies. His research
interests include mobile ad-hoc and mesh net-
works, as well as mobile peer-to-peer systems.

Christoph Lindemann holds the Chair of Com-
puter Networks and Distributed Systems in the
Department of Computer Science at the University
of Leipzig. He received the degree Diplom-
Informatiker (MSc in computer science) from the
University of Karlsruhe, Germany in 1988 and the
degree Doktor-Ingenieur (PhD in Engineering)
from the Technische Universität Berlin, Germany
in 1992. His current research interests lie in mobile
computing systems, especially mobile ad hoc net-
works and peer-to-peer systems as well as model-
ing and performance evaluation as an umbrella
topic.

Christoph Lindemann is a member of the IFIP working group 7.3. He was on
the editorial board of the international journal Performance Evaluation from
2005 to 2010. In 2005, he served as general co-chair for the 11th International
Conference on Mobile Computing and Networking, ACM MobiCom. He
served as general chair of the 26th International Symposium on Computer
Performance, Modeling, Measurements, and Evaluation, Performance 2007. In
2010, he was program co-chair for the 11th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, ACM MobiHoc.

	I. Introduction
	II. Related Work
	III. The Miniaturized Wireless Mesh Testbed
	IV. Putting TCP-AP Into Practice
	A Discrepancy between Simulation and Reality
	B Rate-based Congestion Control
	C Identification of Incipient Congestion
	D The Spatial Reuse Constraint
	E The Adaptive Out-of-Interference Delay Approach
	F Deriving the Adaptive Pacing Rate
	G The refined TCP-AP Algorithm
	H The TCP Framework Implementation for Linux

	V. Performance Evaluation
	A FTP-like Traffic
	Chain Topology

	Parallel Chains Topology
	Random Topologies
	B HTTP-like Traffic

	VI. Conclusion
	References

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

