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Abstract

This paper introduces an efficient numerical algorithm for transient analysis of deterministic and stochastic Petri nets
(DSPNs) and other discrete-event stochastic systems with exponential and deterministic events. The proposed approach
is based on the analysis of a general state space Markov chain (GSSMC) whose state equations constitute a system of
multidimensional Fredholm integral equations. Key contributions of this paper constitute the observations that the transition
kernel of this system of Fredholm equations is piece-wise continuous and separable. Due to the exploitation of these
properties, the GSSMC approach shows great promise for being effectively applicable for the transient analysis of large
DSPNs with concurrent deterministic transitions. Moreover, for DSPNs without concurrent deterministic transitions the
proposed GSSMC approach requires three orders of magnitude less computational effort than the previously known approach
based on the method of supplementary variables.  1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Deterministic and stochastic Petri nets (DSPNs) introduced by Ajmone Marsan and Chiola in [2]
are a stochastic modeling formalism with graphical representation which include both exponentially
distributed and deterministic delays. Under the restriction that in any marking of a DSPN at most one
deterministic transition is enabled, a highly efficient numerical method for steady state analysis has been
introduced [11] and implemented in a software package [12]. While steady state analysis allows the
evaluation of long run behavior of computer and telecommunication systems, a considerable number of
important performance and dependability studies require the analysis of time-dependent behavior; i.e.,
transient analysis.

Previous work on transient analysis of DSPNs was always based on the restriction that deterministic
transitions are not concurrently enabled. Choi, Kulkarni, and Trivedi observed that the marking
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process underlying a DSPN with this restriction is a Markov regenerative stochastic process [4]. They
introduced a numerical method for transient analysis of such DSPNs based on numerical inversion of
Laplace-Stieltjes transforms. While this numerical method is certainly of theoretical interest, it is not
suitable for transient analysis of large DSPNs. More recently, German et al. developed a numerical
method for transient analysis of DSPNs based on the method of supplementary variables (see e.g.,
[5,10]). Using the same approach in a recent paper, Telek and Horvath developed state equations for
transient analysis of Markov regenerative stochastic Petri nets in which timed transitions keep their
remaining firing times in case their firing process gets preempted for subsequent resumption instead of
discarding them and restarting the firing process [16]. Unfortunately, the practical applicability of the
supplementary variables approach is severely limited because it requires, already in this restricted case,
numerical solution of a system of partial differential equations.

This paper introduces an effective numerical method for transient analysis of deterministic and
stochastic Petri nets (DSPNs) without structural restrictions on the enabling of deterministic transitions.
The proposed approach is based on the analysis of a general state space Markov chain (GSSMC) whose
state equations constitute a system of multidimensional Fredholm integral equations. Key contributions
of this paper constitute the observations that the transition kernel of this system of Fredholm equations is
piece-wise continuous and separable. It is known (see e.g., [3]) that numerical solution of such Fredholm
equations requires considerably less computational cost than numerical solution of partial differential
equations.

We illustrate that the GSSMC approach shows great promise for being effectively applicable for the
transient analysis of quite large DSPN with deterministic transitions concurrently enabled. Furthermore,
for DSPNs without concurrent deterministic transitions, the GSSMC approach is three orders of
magnitude faster than the previously known method based on the supplementary variables approach
[5,10]. In particular, for a DSPN as considered in [10] the GSSMC approach requires a couple of
minutes whereas the refined implementation of the supplementary variables approach requires more
than 100 hours of CPU time. This considerable gain in computational efficiency over the approach based
on supplementary variables is due to the following reasons: In the GSSMC approach, the integration
domain is decomposed in disjoint regions in which the elements of the transition kernel are continuous
and differentiable. Thus, the GSSMC approach does not have to deal with discontinuities in functional
expressions in the computational scheme. Furthermore, we observe that the transition kernel of the
GSSMC is separable. That is the kernel matrix can be expressed as the sum of a matrix comprising only
constant entries, a matrix comprising only functional entries setting new clocks (i.e., comprising only of
functional entries in a1 and=or a2/ and a matrix comprising only functional entries taking into account
old clocks (i.e., comprising only of functional entries in c1 and=or c2).

Throughout this paper, we state the GSSMC approach in the context of DSPNs. However, the
GSSMC approach is by no means restricted to analysis of DSPNs. The method introduced in this paper
is also applicable for the transient analysis of queueing networks, stochastic process algebras, and other
discrete-event stochastic systems with an underlying stochastic process which can be represented as a
generalized semi-Markov process with exponential and deterministic events.

The remainder of this paper is organized as follows. In Section 2 we show how to define the general
state space Markov chain underlying a DSPN with concurrent deterministic transitions and introduce
the notation. Section 3 describes the form of the transition kernel. The iterative scheme on the system
of state equations of the GSSMC is presented in Section 4. To illustrate the applicability of the GSSMC
approach for transient analysis of DSPNs, in Section 5 we provide curves plotting computational
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effort and memory requirements for transient analysis of DSPNs of an MMPP=D=2=K queue and an
MMPP=D=1=K queue with failure and repair as already considered in [10]. Finally, concluding remarks
are given (Section 6).

2. Analysis of the marking process of a DSPN by a general state space Markov chain

Formally, a Petri net is a directed bipartite graph with one set of vertices called places (drawn as
circles) and the other called transitions (drawn as bars). Places may contain tokens which are drawn as
dots. Places and transitions are connected by directed arcs or inhibitor arcs (drawn with an circled head).
Arcs may be labeled with integer numbers denoting their multiplicity. The default multiplicity of an arc
is one. A transition is said to be enabled, if all of its input places contain at least as many tokens as
the multiplicity of the corresponding input arc and all of its inhibitor places contain less tokens than the
multiplicity of the corresponding inhibitor arc. A transition fires by removing from each input place as
many tokens as the multiplicity of the corresponding input arc, and by adding to each output place as
many tokens as the multiplicity of the corresponding output arc. In deterministic and stochastic Petri
Nets (DSPNs [2]) three types of transitions exist: immediate transitions drawn as thin bars fire without
delay, exponential transitions drawn as empty bars fire after an exponentially distributed delay whereas
deterministic transitions drawn as black bars fire after a constant delay.

Numerical analysis of DSPNs proceeds by computing transient or stationary distributions for its
underlying continuous-time stochastic process fS.t/: t ½ 0g. The process fS.t/: t ½ 0g has a discrete
state space (i.e., the tangible markings of the DSPN) and is denoted as the marking process of the
DSPN. Since the deterministic distribution does not show absence of memory, a proper definition of the
stochastic behavior of DSPNs requires the specification how the selection of the next transition to fire is
performed and how the model keeps track on past history. Throughout this paper, we assume that among
all enabled timed transitions in a DSPN the one with the minimum remaining firing time determines the
next marking change. Furthermore, after a marking change each timed transition newly enabled samples
a remaining firing time from its firing delay distribution and each timed transition, which has already
been enabled in the previous marking and is still enabled in the current marking, keep its remaining
firing time. This stochastic behavior corresponds to the execution policy race with enabling memory
as defined in [1]. We assume that the reachability graph of the DSPN comprises of a finite number of
tangible markings, denoted by N .

In [13], we showed that the marking process fS.t/: t ½ 0g can be represented as a generalized
semi-Markov process with exponential and deterministic events. The execution policy race with enabling
memory also coincidences with the usual state transition mechanism in a generalized semi-Markov
process (see e.g., [7,8]). For stationary analysis of the continuous-time marking process underlying a
DSPN with concurrent deterministic transitions, we defined in [13] a discrete-time general state space
Markov chain (GSSMC). A GSSMC is completely specified by a transition kernel (heuristically, this
is a family of probability matrices) and an initial distribution at time t D 0. As shown in [13], given
the tangible reachability graph of a DSPN, the transition kernel of the underlying GSSMC can be
numerically determined by extending the concept of subordinated Markov chains introduced in [11]. As
explained below, the initial distribution of the GSSMC can easily be derived from the initial marking of
the corresponding DSPN.

We enumerate the deterministic transitions of the DSPN by t1; t2; : : :; tM and define Dm to be the
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firing delay of transition tm (1 � m � M). Let Cm.t/ be the remaining firing time associated with
deterministic transition tm at time t ½ 0. In any state in which deterministic transition tm is not enabled,
we set Cm.t/ D 0. To derive the GSSMC underlying a DSPN, we define a discrete-time process
fX .nD/: n ½ 0g by observing the marking process fS.t/: t ½ 0g at a sequence fnD: n ½ 0g of fixed
times for some appropriately defined step size D > 0.

X .nD/ D .S.nD/;C1.nD/;C2.nD/; : : :;CM .nD// : (1)

The process S.nD/ represents the state (i.e., tangible marking of the DSPN) and Cm.nD/ represents
the mth component of the clock-reading vector (i.e., remaining firing time of deterministic transitions
tm) at instant of time nD. The memoryless property of the exponential distribution implies that
fX .nD/: n ½ 0g is a GSSMC, i.e., it satisfies the Markov property.

For ease of exposition, we restrict the discussion in this paper to DSPNs in which at most
two deterministic transitions may be concurrently enabled. Then, the subset of tangible markings
(i.e., states of the GSSMC) in which only exponential transitions are enabled is denoted by Sexp.
Similarly, the subsets of states in which one deterministic transition and two deterministic transitions
are (concurrently) enabled are denoted by Sdet1 and Sdet2, respectively. Without loss of generality, we
enumerate the states of the marking process as follows:

Sexp D fs1; s2; : : :; sN1g;
Sdet1 D fsN1C1; sN1C2; : : :; sN1CN2g;
Sdet2 D fsN1CN2C1; sN1CN2C2; : : :; sN g:

(2)

The derivation of the initial distribution of the GSSMC, denoted by X0, from initial (tangible)
marking of the DSPN is straight forward. To specify X0, we define initial state probabilities at time
t D 0 as:

³0
i D PfS.0/ D sig for 1 � i � N1;

³0
i .a1/ D PfS.0/ D si ;Cl.i/.0/ � a1g for N1 C 1 � i � N1 C N2;

³0
i .a1; a2/ D PfS.0/ D si ;Cl.i/.0/ � a1;Cm.i/.0/ � a2g for N1 C N2 C 1 � i � N :

(3)

In (3), we denote the index of the deterministic transition(s) enabled in a state si by l.i/ and m.i/,
respectively and neglect other zero-valued remaining firing times. If the marking process of the DSPN
resides at time 0 in some state si 2 Sdet1 and deterministic transition tl.i/ just starts its firing procedure,
we obtain the following initial distribution:

³0
j D 0 for 1 � j � N1;

³0
i .Dl.i// D 1:0; ³0

j .Dl. j// D 0 for N1 C 1 � j � N1 C N2 with j 6D i;

³0
j .Dl. j/; Dm. j// D 0 for N1 C N2 C 1 � j � N :

If the initial marking si 2 Sexp or si 2 Sdet2, the initial distribution of the underlying GSSMC is
derived accordingly. Note that the GSSMC approach allows the consideration of more general initial
distributions than those that are arising from the assumption that the DSPN resides initially in a single
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tangible marking in which deterministic transitions just start their firing procedure. In general, any initial
distribution subject to the normalization condition (see Eq. (21) in Section 4) is a feasible initial state.

Given the initial distribution X0 for the GSSMC and using (2), we define for the GSSMC underlying
a DSPN with two deterministic transitions concurrently enabled three kinds of time-dependent state
probabilities:

³
.n/
i D PfS.nD/ D si j X0g for si 2 Sexp;

³
.n/
i .a1/ D PfS.nD/ D si ;Cl.i/.nD/ � a1 j X0g for si 2 Sdet1;

³
.n/
i .a1; a2/ D PfS.nD/ D si ;Cl.i/.nD/ � a1;Cm.i/.nD/ � a2 j X0g for si 2 Sdet2

(4)

for n D 1; 2; : : : and 0 < a1; a2 � D.

Subsequently, the transient state probabilities of the marking process of the DSPN at instants of time
t D nD are given by ³.n/i for si 2 Sexp, ³.n/i .Dl.i// for si 2 Sdet1 and, ³.n/i .Dl.i/; Dm.i// for si 2 Sdet2,
respectively.

To determine the transient state probabilities of the marking process of a DSPN at an arbitrary instant
of time t > 0, we determine the number of iterations in the scheme (24) to (28), n0 D bt=Dc, and
the remaining instant of time, a D t � bt=Dc. Then, we derive the transient state probabilities at time
t from the state probability vector at time n0 D by a forward Chapman-Kolmogorov equation of the
GSSMC with step size a. By this approach, we exploit that due to the definition of the GSSMC holds
for 0 < a � D:

³
.n0 DCa/
i D PfS.n0D C a/ D si j X0g for si 2 Sexp;

³
.n0 DCa/
i .Dl.i// D PfS.n0 D C a/ D si ;Cl.i/.n0 D C a/ � a j X0g for si 2 Sdet1;

³
.n0 DCa/
i .Dl.i/; Dm.i//

D PfS.n0D C a/ D si ;Cl.i/.n0 D C a/ � a;Cm.i/.n0 D C a/ � a j X0g for si 2 Sdet2:

(5)

In [15], a similar decomposition of the transient instant of time has been employed for computing
dependability measures of a particular single server queueing systems with deterministic repair.

Furthermore, as shown in [13], the stationary or time-averaged distribution of the discrete-time
process fS.nD/: n ½ 0g is equal to the stationary or time-averaged distribution of the continuous-time
process fS.t/: t ½ 0g. That is:

lim
t!1 PfS.t/ D sig D lim

n!1 PfS.nD/ D si g if a stationary solution exists,

lim
t!1

1

t

tZ
0

PfS.u/ D sig du D lim
n!1

1

n

nX
kD0

PfS.kD/ D si g otherwise
(6)

for 1 � i � N .

Note that if the GSSMC fX .nD/: n ½ 0g is not only aperiodic and positive recurrent but also
has a regeneration set, both this discrete-time process and the continuous-time marking process of
the corresponding DSPN have a stationary distribution. In the examples considered in Section 5, a
stationary distribution exists, only if the effective arrival rates are smaller than the service rates (e.g.,
½eff < 2=D for the MMPP=D=2=K queue). Otherwise, the long run behavior of the marking process can
be evaluated by the time-averaged distribution of the corresponding GSSMC.
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3. The transition kernel

The transition kernel of the GSSMC specifies one-step jump probabilities from a given state at instant
of time nD to all reachable new states at instant of time .n C 1/D. As for an ordinary discrete-time
Markov chain, for all states s j not reachable from si corresponding jump probabilities pi j .Ð/ are set to
zero. In general, entries of the transition kernel of a GSSMC are functions of clock readings c1 and c2

associated with the current state si and intervals for clock readings .0; a1] and .0; a2] associated with
the new state s j . In this section, we derive the form of the transition kernel of the GSSMC underlying
a DSPN with at most two deterministic transitions concurrently enabled. Without loss of generality, we
always assume a1 � a2.

Given the GSSMC fX .nD/: n ½ 0g underlying a DSPN with at most two concurrently enabled
deterministic transitions, the transition kernel can be expressed by a functional matrix P.c1; c2; a1; a2/.
For state transitions within the set Sdet2 elements of P.c1; c2; a1; a2/ are defined as conditional
probabilities that the next state is s j with clock readings Cl. j/ 2 .0; a1] and Cm. j/ 2 .0; a2] given that
the current state is si with clock readings Cl.i/ D c1 and Cm.i/ D c2. That is:

pi j .c1; c2; a1; a2/ D PfS..n C 1/D/ D s j ;Cm. j/..n C 1/D/ � a1;Cl. j/..n C 1/D/ � a2

j S.nD/ D si ;Cm.i/.nD/ D c1;Cl.i/.nD/ D c2g: (7)

Omitting the second clock reading, we obtain the general form of transition probabilities from Sdet2 to
Sdet1 and within Sdet1. Elements of P.c1; c2; a1; a2/ representing transition probabilities within Sexp are
defined as conditional probabilities that the next state is s j given that the current state is si ; i.e., as in an
ordinary DTMC. That is:

pi j .D/ D PfS..n C 1/D/ D s j j S.nD/ D sig: (8)

To determine transient state probabilities of the GSSMC at arbitrary instants of time (i.e., not only at
t D nD where n D 1; 2; : : :), kernel elements of the form (8) are needed for all 0 < a1 � D. Thus in
general, elements of P.c1; c2; a1; a2/ representing transition probabilities within Sexp are defined as:

pi j .a1/ D PfS.nD C a1/ D s j j S.nD/ D sig for 0 < a1 � D: (9)

Transition probabilities from Sdet2 and Sdet1 to Sexp are defined similar to (9). Because two deterministic
transitions may be enabled concurrently, we have to consider several cases for the clock readings c1 and
c2. In general, the following four cases may occur:

.a/ 0 < c1; c2 � a1 with c1 < c2;

.b/ 0 < c1 � a1 and a1 < c2 � a2;

.c/ 0 < c1; c2 � a1 with c1 > c2;

.d/ 0 < c2 � a1 and a1 < c1 � a2:

Note that if the kernel is symmetric with respect to c1 < c2 and c1 > c2, only the cases (a) and (b)
have to be considered. With (7) and (9) the general form of the kernel matrix P.c1; c2; a1; a2/ can be
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written as a composition of nine submatrices P i j .Ð/ of appropriate dimension. For the case c1 < c2 the
transition kernel P.c1; c2; a1; a2/ has the form:

P.c1; c2; a1; a2/ D

0BBBBBBBBB@

P11.a1/ P12.a1; a2/ P13.a1; a2/

P21.c1; a1/ P22.c1; a1; a2/ P23.c1; a1; a2/

P31.c1; c2; a1/ P32.c1; c2; a1; a2/ P33.c1; c2; a1; a2/

1CCCCCCCCCA

1
:::

N1
N1C1
:::

N1CN2
N1CN2C1
:::
N

(10)

1 N1

þþN1C1 N1CN2

þþN1CN2C1 N

Taking into account the cases (a) and (b), we distinguish in the submatrices P22.c1; a1; a2/,
P23.c1; a1; a2/, P32.c1; c2; a1; a2/ and P33.c1; c2; a1; a2/ the two cases:

P22.c1; a1; a2/ D
(

R22.c1; a1; a2/ for 0 < c1 � a1;

S22.c1; a1; a2/ for 0 < a1 � c1;

P23.c1; a1; a2/ D
(

R23.c1; a1; a2/ for 0 < c1 � a1;

S23.c1; a1; a2/ for 0 < a1 � c1 � a2;
(11)

P32.c1; c2; a1; a2/ D
(

R23.c1; c2; a1; a2/ for 0 < c1; c2 � a1 with c1 < c2;

S23.c1; c2; a1; a2/ for 0 < c1 � a1 < c2;

P33.c1; c2; a1; a2/ D
(

R33.c1; c2; a1; a2/ for 0 < c1; c2 � a1 with c1 < c2;

S33.c1; c2; a1; a2/ for 0 < c1 � a1 and a1 < c2 � a2:
(12)

In (10), the submatrix P11.a1/ represents state transitions among states of Sexp, P12.a1; a2/ represents
state transitions from states of Sexp to states of Sdet1, and P13.a1; a2/ represents state transitions from
states of Sexp to states of Sdet2. Furthermore, submatrix P22.c1; a1; a2/ represents state transitions among
states of Sdet1 and P21.c1; a1/ represents state transitions from states of Sdet1 to states of Sexp. The
submatrices P23.c1; a1; a2/ represents state transitions from states of Sdet1 to states of Sdet2, respectively.
State transition from states of Sdet2 to states of Sdet1 and Sexp are represented by the submatrices
P32.c1; c2; a1; a2/ and P31.c1; c2; a1/. The submatrix P33.c1; c2; a1; a2/ represents state transition
among states of Sdet2. If c1 > c2 the transition kernel P.c1; c2; a1; a2/ is of similar form. The difference
lies in that the submatrices P21.Ð/, P22.Ð/, and P23.Ð/ may depend on c2 instead of c1, i.e., for c1 > c2

these submatrices are of the form P21.c2; a1/, P22.c2; a1; a2/, and P23.c2; a1; a2/.
As described in [12,13], the transition kernel of the form (10) can be effectively determined by an

extension of the concept of subordinated Markov chains introduced in [11]. Recall that a subordinated
Markov chain associated with a state si is a CTMC whose states are given by the transitive closure of all
states sk reachable from si via the occurrence of exponential events. Numerical computation of kernel
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elements is performed by transient analysis of these CTMCs [9], though not only for instant of time
D (as for steady-state analysis of DSPNs without concurrent deterministic transitions [11]), but also
for instants of time 0 < t � D. Thus, numerical computation of the transition kernel P.c1; c2; a1; a2/

requires asymptotically the same effort as the computation of the probability matrix of the embedded
DTMC for a DSPN without concurrent deterministic transitions. Furthermore, it is clear that all kernel
elements pi j .Ð/ are continuous and differentiable.

A key contribution of this paper constitutes the observation that the transition kernel P.c1; c2; a1; a2/

is separable. That means that submatrices of P.c1; c2; a1; a2/ can be expressed as sums of matrices
K i j and J i j comprising only constant entries, matrices comprising only functional entries setting new
clocks Gi j .Ð/ and H i j .Ð/; i.e., comprising only of functional entries in a1 and=or a2, and matrices
comprising only functional entries taking into account old clocks U i j .Ð/ and V i j .Ð/; i.e., comprising
only of functional entries in c1 and=or c2. That is:

P.c1; c2; a1; a2/ D

0BBBBBBBBB@

P11.a1/ P12.a1; a2/ P13.a1; a2/

K21 C U21.c1/C G21.a1/ P22.c1; a1; a2/ P23.c1; a1; a2/

K31 C U31.c1; c2/C G31.a1/ P32.c1; c2; a1; a2/ P33.c1; c2; a1; a2/

1CCCCCCCCCA
(13)

with

P22.c1; a1; a2/ D
(

K 22 C U22.c1/C G22.a1; a2/ for 0 < c1 � a1;

J22 C V 22.c1/C H22.a1; a2/ for 0 < a1 � c1;
(14)

P23.c1; a1; a2/ D
(

K 23 C U23.c1/C G23.a1; a2/ for 0 < c1 � a1;

J23 C V 23.c1/C H23.a1; a2/ for 0 < a1 � c1 � a2:
(15)

The matrices P32.c1; c2; a1; a2/ and P33.c1; c2; a1; a2/ are separated in a similar way.
The separability of the transition kernel implies that numerical integration in the iterative solution

scheme of the Fredholm equations described in Section 4 need only be performed for kernel elements
that actually depend on current clock values c1 and=or c2. Furthermore, even if numerical integration
has to be performed, we can take out from the composite quadrature formulas expressions dependent on
new clock values a1 and=or a2. Thus, in each iteration for each state probability and mesh point only a
constant number of summations are required to perform integration by numerical quadrature.

4. Iterative solution of the Fredholm integral equations

As shown in [12,13] the GSSMC approach allows the numerical analysis of DSPNs with concurrent
deterministic transitions with different delays. However, for ease of exposition we discuss in this
section only the restricted case that all deterministic transitions of the DSPN have the same firing delay
D. The extension of the time-dependent equations for DSPNs with deterministic transitions having
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different delays can be performed exactly as for the system of stationary equations introduced in [13].
Furthermore, we assume that the transition kernel is symmetric with respect to c1 < c2 and c1 > c2.
This assumption implies that for s j 2 Sdet2 ³

.n/
j .a1; a2/ D ³

.n/
j .a2; a1/ with 0 < a1; a2 � D and

n D 0; 1; 2: : :. Relaxing this assumption replaces the factor 2 in the system (17) to (19) by an additional
two-dimensional integral expressions. Furthermore, this system of equations must be extended by an
additional equation to compute state probabilities of the form ³

.n/
j .a2; a1/. These steps are exactly the

same as discussed in [12] for the system of stationary equations.
To write the system of time-dependent equations for the GSSMC in vector notation, we define three

vectors of state probabilities for the states of Sexp, Sdet1, and, Sdet2 respectively:

³
.n/
exp D

�
³
.n/
1 ; ³

.n/
2 ; : : :; ³

.n/
N1

�
;

³
.n/
det1.a1/ D

�
³
.n/
N1C1.a1/; ³

.n/
N1C2.a1/; : : :; ³

.n/
N1CN2

.a1/
�
;

³
.n/
det2.a1; a2/ D

�
³
.n/
N1CN2C1.a1; a2/; ³

.n/
N1CN2C2.a1; a2/; : : :; ³

.n/
N .a1; a2/

�
:

(16)

Then, using the submatrices P i j .Ð/ of the transition kernel defined in (10) to (12), time-dependent
state probabilities for the GSSMC underlying a DSPN with two deterministic transitions concurrently
enabled can be derived by the (discrete-time) forward Chapman-Kolmogorov equations. Thus, for
n D 0; 1; 2; : : : we have:

³.nC1/
exp D ³.n/exp Ð P11.D/C

DZ
0

d³.n/det1.c1/

dc1
Ð P21.c1; D/ dc1

C 2

DZ
0

c2Z
0

@2³
.n/
det2.c1; c2/

@c1@c2
Ð P31.c1; c2; D/ dc1dc2; (17)

³
.nC1/
det1 .a1/ D ³.n/exp Ð P12.a1; D/C

a1Z
0

d³.n/det1.c1/

dc1
Ð R22.c1; a1; D/ dc1

C
DZ

a1

d³.n/det1.c1/

dc1
Ð S22.c1; a1; D/ dc1

C 2

a1Z
0

c2Z
0

@2³
.n/
det2.c1; c2/

@c1@c2
Ð R32.c1; c2; a1; D/ dc1dc2

C 2

DZ
a1

a1Z
0

@2³
.n/
det2.c1; c2/

@c1@c2
Ð S32.c1; c2; a1; D/ dc1dc2; (18)
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³
.nC1/
det2 .a1; a2/ D ³.n/exp Ð P13.a1; a2/C

a1Z
0

d³.n/det1.c1/

dc1
Ð R23.c1; a1; a2/ dc1

C
a2Z

a1

d³.n/det1.c1/

dc1
Ð S23.c1; a1; a2/ dc1

C 2

a1Z
0

c2Z
0

@2³
.n/
det2.c1; c2/

@c1@c2
Ð R33.c1; c2; a1; a2/ dc1dc2

C 2

a2Z
a1

a1Z
0

@2³
.n/
det2.c1; c2/

@c1@c2
Ð S33.c1; c2; a1; a2/ dc1dc2 for 0 < a1; a2 � D. (19)

The system of Eqs. (17)–(19) constitutes a system of two-dimensional Fredholm integral equations
already written in an iterative scheme for its numerical solution. This iterative scheme called Picard
iteration is known to converge to a unique solution, if the transition kernel of the GSSMC is continuous
or piece-wise continuous in the rectangular region [0; D]ð [0; D] and, thus, P.c1; c2; a1; a2/ is bounded
[3]. Due to the decomposition in four different subregions, all elements of P.c1; c2; a1; a2/ as defined in
Section 3 are piece-wise continuous. Thus, the iterative scheme (17) to (19) converges to the stationary
or time-averaged solution defined in Eq. (6) when n goes to infinity. Moreover, by taking the limits
n!1 in (17) to (19), we derive the system of stationary equations for the GSSMC underlying a DSPN
with two deterministic transitions concurrently enabled introduced in [12,13].

In each iteration n D 0; 1; 2; : : :, the boundary conditions of the system (17) to (19) are given by:

³
.n/
i .0/ D 0 for N1 C 1 � i � N1 C N2;

³
.n/
i .c1; 0/ D 0 for N1 C N2 C 1 � i � N and 0 � c1 � D; (20)

³
.n/
i .0; c2/ D 0 for N1 C N2 C 1 � i � N and 0 � c2 � D:

Note that the system (17) to (19) already includes the normalization condition (21) for the state
probabilities of the marking process. For n D 0; 1; 2; : : : holds:

N1X
jD1

³
.n/
j C

N1CN2X
jDN1C1

³
.n/
j .D/C

NX
jDN1CN2C1

³
.n/
j .D; D/ D 1: (21)

Using (5), the time-dependent state probabilities at arbitrary instants of time t D nD C a are given by:

³.nDCa/
exp D ³

.n/
exp Ð P11.a/C

aR
0

d³.n/det1.c1/

dc1
Ð P21.c1; a/ dc1

C 2

aZ
0

c2Z
0

@2³
.n/
det2.c1; c2/

@c1@c2
Ð P31.c1; c2; a/ dc1dc2;

³
.nDCa/
det1 .D/ D ³.nC1/

det1 .a/;

³
.nDCa/
det2 .D; D/ D ³.nC1/

det1 .a; a/: for 0 < a < D:

(22)
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Let us point out that if the DSPN contains only exponential transitions (i.e., Sdet1 D Sdet2 D f g) the
system (17) to (19) reduces to an ordinary Chapman–Kolmogorov equation in discrete time. That is:

³.nC1/
exp D ³.n/exp Ð P11.D/ where P11.D/ D eQD: (23)

In (23) the matrix Q constitutes the generator of the CTMC defined by tangible markings of such a
DSPN (i.e., a GSPN) and state transitions corresponding to firings of exponential transitions.

To simplify the notation in the system (17) to (19), we introduce two vectors y.n/.c1/ and z.n/.c1; c2/

for the derivatives of state probabilities as:

y.n/.c1/ D
d³.n/det1.c1/

dc1
; (24)

z.n/.c1; c2/ D @2³
.n/
det2.c1; c2/

@c1@c2
: (25)

Using (24) and (25) and exploiting the separability of the transition kernel introduced in (13) to (15), we
can rewrite the system (17) to (19) as:

³.nC1/
exp D ³.n/exp Ð P11.D/C ³.n/det1.D/ Ð .K21 C G21.D//

C
DZ

0

y.n/.c1/ Ð U21.c1/ dc1 C ³.n/det2.D; D/ Ð .K 31 C G31.D//

C 2

DZ
0

c2Z
0

z.n/.c1; c2/ Ð U31.c1; c2/ dc1dc2; (26)

³
.nC1/
det1 .a1/ D ³.n/exp Ð P12.a1/C ³.n/det1.a1/ Ð .K 22 C G22.a1; D//

C
a1Z

0

y.n/.c1/ Ð U22.c1/ dc1 C
�
³
.n/
det1.D/� ³.n/det1.a1/

�
Ð .J22 C H22.a1; D//

C
DZ

a1

y.n/.c1/ Ð V 22.c1/ dc1 C ³.n/det2.a1; a1/ Ð .K 32 C G32.a1; D//

C 2

a1Z
0

c2Z
0

z.n/.c1; c2/ Ð U32.c1; c2/ dc1dc2 C 2
�
³
.n/
det2.a1; D/� ³.n/det2.a1; a1/

�
Ð .J32 C H32.a1; D//

C 2

DZ
a1

a1Z
0

z.n/.c1; c2/ Ð V32.c1; c2/ dc1dc2; (27)
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³
.nC1/
det2 .a1; a2/ D ³.n/exp Ð P13.a1; a2/C ³.n/det1.a1/ Ð .K 23 C G23.a1; a2//

C
a1Z

0

y.n/.c1/ Ð U23.c1/ dc1 C
�
³
.n/
det1.a2/� ³.n/det1.a1/

�
Ð .J23 C H23.a1; a2//

C
a2Z

a1

y.n/.c1/ Ð V 23.c1/ dc1 C ³.n/det2.a1; a1/ Ð .K 33 C G33.a1; a2//

C 2

a1Z
0

c2Z
0

z.n/.c1; c2/ Ð U33.c1; c2/ dc1dc2

C 2
�
³
.n/
det2.a1; a2/� ³.n/det2.a1; a1/

�
Ð .J33 C H33.a1; a2//

C 2

a2Z
a1

a1Z
0

z.n/.c1; c2/ Ð V 33.c1; c2/ dc1dc2 for 0 < a1; a2 � D. (28)

The system of Fredholm Eqs. (26)–(28) together with (24) and (25) give rise to an iterative scheme for
the effective numerical transient analysis of the marking process of a DSPN in which two deterministic
transitions may be enabled concurrently.

Using an appropriate discretization, the iterative scheme (24) to (28) leads to a constant number of
additions and a vector-matrix multiplication for each mesh point .k∆; l∆/ with 1 � k; l � M. The
number of discretization steps (in each direction), denoted by M, is given by M D D=∆. Depending on
the (mean) firing delays of timed transitions of a DSPN, the value of ∆ can be automatically determined
such that a pre-defined error tolerance for the approximation of integrals is met [3]. Using an appropriate
formula for numerical differentiation, in each iteration for each mesh point the vector y.n/.k∆/ and
z.n/.k∆; l∆/ of Eq. (24) is computed with a constant number of additions.

Subsequently, each integral in the system of Fredholm Eqs. (26)–(28) is approximated by a finite
sum that corresponds to the integral of an interpolating polynomial over some partition of the interval of
integration. In our current implementation, we employ a composite Simpson rule combined with a 3=8

Table 1
Main steps of the iterative scheme for numerical transient analysis of DSPNs

for n D 0; 1; 2; : : :; n0 � 1
(1) for k D 0; 1; : : :;M � 1

compute the vector of derivatives y.n/.k∆/ according to (24)
(2) for k D 0; 1; : : :;M and l D k; k C 1; : : :;M

compute the vector of derivatives z.n/.k∆; l∆/ according to (25)
(3) perform next iteration step

(3.1) compute the vector of state probabilities ³.nC1/
exp according to (26)

(3.2) for k D 1; 2; : : :;M
compute the vector of state probabilities ³.nC1/

det1 .k∆/ according to (27)
(3.3) for k D 1; 2; : : :;M and l D k; k C 1; : : :;M

compute the vector of state probabilities ³.nC1/
det2 .k∆; l∆/ according to (28)
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rule for both one-dimensional and two-dimensional integrals as a straightforward quadrature formula
with fixed step size [12].

Given the submatrices of the transition kernel P.c1; c2; a1; a2/ of (13) to (15) and the initial
distribution of the GSSMC according to (3) at each mesh point .k∆; l∆/ with 1 � k; l � M and the
mission time t D n0 D, the main steps of the iterative scheme are summarized in Table 1.

5. Performance curves

To illustrate the practical applicability of the GSSMC approach for transient analysis of DSPNs, we
consider DSPNs of two queueing systems of high interest for communication network performance
analysis. For these two DSPNs we present curves for CPU solution time and memory requirements
versus model size. The experiments have been performed on a Sun Sparc Enterprise station with 1
GByte main memory running the operating system SunOS5.6. For the performance tests the CPU time
has been measured by the UNIX system call clock.

Fig. 1 shows a DSPN of an MMPP=D=2=K queue as an example for a DSPN with concurrent

Fig. 1. DSPN of the MMPP=D=2=K queue.
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Fig. 2. MMPP=D=2=K queue: CPU time vs. model size.

deterministic transitions. The K tokens residing in place Capacity in the initial marking represent
the finite number of buffers of the queueing system. The number tokens residing the place Level of
burstiness control the mean firing time of the exponential transition Markov modulated Poisson arrival.
That is, the Markov modulated Poisson arrival stream is represented by defining the firing delay of the
corresponding exponential transition dependent on the number of tokens in the place Level of burstiness.
Tokens contained in the places Customers in queue represent customers waiting in the queue. Tokens
contained in the places Server 1 busy and Server 2 busy represent customers currently being served.
The number of tangible markings of this DSPN is given by .K C 2/ Ð .N C 1/. The constant service
requirements are modeled by the deterministic transitions Service 1 and Service 2 which have firing
delay D D 1:0. We assume that the immediate transitions Start service at station 1 and Start service at
station 2 have both associated firing weights 1=2, such that arriving customers to an empty system join
each server with equal probability.

In all experiments, model parameters of the arrival process are set such that the effective arrival rate
½eff D 0:9 and zero customers reside in the queue at time t D 0. The number of discretization steps
employed in each dimension in the composite quadrature rule in the iterative scheme is M D 10.

Fig. 2 plots the CPU time required for computing the transient solution at instant of time t D 100
for increasing model size. We observe a linear growth of CPU time. This is due to the exploitation
of the separabilty of the transition kernel P.c1; c2; a1; a2/ resulting in an almost linear growth of the
nonzero kernel elements to be considered in the iterative scheme. Fig. 3 plots the memory requirements
for storing the nonzero elements of the transition kernel versus model size and, thus, provides further
evidence along this line. In a second experiment, the model size is kept fixed to 5000 and the mission
time (i.e., the number of iterations that have to be performed by the iterative scheme) is varied. As
expected, Fig. 4 shows a linear growth of CPU time for increasing mission time, since in each step of
the iterative scheme a constant number of vector matrix multiplications is performed.

Fig. 5 shows a DSPN for an MMPP=D=1=K queue with breakdown and repair as an example for a
DSPN without concurrent deterministic transitions. The difference to the DSPN of Fig. 1 lies in that the
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Fig. 3. MMPP=D=2=K queue: memory requirements vs. model size.

Fig. 4. MMPP=D=2=K queue: CPU time vs. mission time.

system contains only one service center, which may fail and can be repaired. The number of tangible
markings of this DSPN is given by 2 Ð .K C 1/ Ð .N C 1/. As in Fig. 1, the constant service requirement
is assumed as D D 1:0. In all experiments, model parameters of the Markov modulated arrival process
are set such that the effective arrival rate ½eff D 0:9, zero customers reside in the queue and the system is
operating at time t D 0. Failures of the system are assumed to be exponentially distributed. Repair times
are assumed to be constant.
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Fig. 5. DSPN of the MMPP=D=1=K queue with breakdown and repair.

Figs. 6–8 show the same set of curves for this DSPN as Figs. 2–4 for the MMPP=D=2=K queue.
Again, the number of discretization steps employed in the iterative scheme is M D 10. In Figs. 6 and
7, a mission time of t D 100 is considered and in Fig. 8 the model size is fixed to 5000. Note that
the curves shown in these figures have the same shape as corresponding curves shown in Figs. 2–4. In
particular, from Fig. 6 plotting the CPU time versus model size, we observe only a linear growth of

Fig. 6. MMPP=D=1=K queue: CPU time vs. model size.
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Fig. 7. MMPP=D=1=K queue: memory requirements vs. model size.

Fig. 8. MMPP=D=1=K queue: CPU time vs. mission time.

CPU time for increasing model size. This again illustrate the benefit of exploiting the separability of the
transition kernel in the iterative scheme. A DSPN of an MMPP=D=1=K queue with failure and repair
was already considered in [10]. Figs. 6–8 evidently illustrate the computational benefits of the GSSMC
approach versus the approach based on the method of supplementary variables proposed in [6,10].

Since the DSPN of Fig. 5 does not contain concurrently enabled deterministic transitions, the
stationary of time-averaged state probabilities of its marking process can be computed by an embedded
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Fig. 9. MMPP=D=1=K queue: accuracy vs. discretization steps.

Markov chain as proposed in [2] and implemented in the software package DSPNexpress [12,14].
We use this fact for estimating the numerical accuracy achieved by the GSSMC approach for a given
numerical quadrature of the integral expressions. Fig. 9 plots the accuracy of the stationary distribution
of the DSPN of Fig. 5 achieved by the GSSMC approach versus the number of discretization points
employed in the iterative scheme. We observe that for already 10 discretization points an accuracy of
less that 10�7 is obtained.

6. Conclusions

This paper introduced the GSSMC approach for transient analysis of DSPNs with concurrently
enabled deterministic transitions. The GSSMC approach is based on numerical iterative solution of
a system of Fredholm integral equations. A key contribution of this paper is the observation that
the transition kernel of the GSSMC is separable. That is the functional matrix P.c1; c2; a1; a2/ can
be expressed as the sum of matrices comprising only constant entries, matrices comprising only of
functional entries in a1 and=or a2, and matrices comprising only functional entries in c1 and=or c2.

To illustrate the practical applicability of the GSSMC approach for transient analysis of large DSPNs
with concurrent deterministic transitions, we presented curves for an MMPP=D=2=K queue plotting
the CPU time and memory requirements versus model size and mission time, respectively. In order
to compare the performance of the GSSMC approach with the supplementary variables approach
introduced in previous work [5,10], we provided the same set of curves for an MMPP=D=1=K queue
with failure and repair. For this DSPN, the GSSMC approach requires a couple of minutes of CPU
time whereas as reported in [10] the supplementary variables approach requires more than 100 hours of
CPU time. Thus, we conclude that the GSSMC approach performs numerical transient analysis of large
DSPNs without concurrent deterministic transitions three orders of magnitude faster than the previously
known approach based on the method of supplementary variables.
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