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Abstract 

In this paper, we show how to utilize the expectation-maximization (EM) 

algorithm for efficient and numerical stable parameter estimation of the batch 

Markovian arrival process (BMAP). In fact, effective computational formulas for 

the E-step of the EM algorithm are presented, which utilize the well-known 

randomization technique and a stable calculation of Poisson jump probabilities. 

Moreover, we identify the BMAP as an analytically tractable model of choice for 

aggregated traffic modeling of IP networks. The key idea of this aggregated traffic 

model lies in customizing the BMAP such that different lengths of IP packets are 

represented by rewards of the BMAP. Using measured traffic data, a comparative 

study with the MMPP and the Poisson process illustrates the effectiveness of the 

customized BMAP for IP traffic modeling by visual inspection of sample paths 

over several time scales, by presenting important statistical properties as well as 

by investigations of queuing behavior. 
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1 Introduction 

Traffic characterization and modeling constitute important steps towards understanding and 

solving performance-related problems in future IP networks. The central idea of traffic 

modeling lies in constructing models that capture the most important statistical properties of 

the underlying measured trace data [2]. For IP traffic, important statistical properties are 

burstiness and self-similarity. Intuitively, this means that measured IP traffic shows noticeable 

sustained periods with arrivals above the mean (i.e., bursts) over a wide range of different 

time scales [21]. Aggregated traffic models capture the entire traffic stream without explicitly 

considering individual traffic sources, e.g. the traffic originated by individual users. The 

problem of accurately capturing these properties in aggregated traffic models has been solved 

for non-analytically tractable models but is still subject of current research interest for 

analytically tractable models. Non-analytically tractable models, e.g. fractional Gaussian 

noise (fGN) and fractional autoregressive integrated moving average (fARIMA), naturally 

capture burstiness as well as self-similarity [10]. Various research papers have subjected these 

models, e.g. Ledesma and Liu reported the effective construction of fGN in [12]. 

For analytically tractable models, e.g. the Markov-modulated Poisson process (MMPP, 

[7]), recent work has been proposed that utilizes the MMPP in order to mimic self-similar 

behavior [1], [22]. Skelly, Schwartz, and Dixit [16] utilized the MMPP for video traffic 

modeling. They described a simple and efficient method for parameter estimation of a general 

MMPP based on the match of the marginal distribution of the arrival rate. The class of batch 

Markovian arrival process (BMAP, [13]) includes the well known Poisson-process, MMPP, 

and Markovian arrival process (MAP, [13]) as special cases and additionally associates 

rewards (i.e., batch sizes of arrivals) to arrival times. However, due to the addition of rewards 

the BMAP provides a more comprehensive tool for representing IP traffic than the MMPP or 

the MAP, while still being analytically tractable. 

The challenge for employing BMAPs to model IP traffic constitutes the proper parameter 

estimation for this arrival process from the given trace data. In fact, measured trace data does 

not contain all statistical properties required for the unique specification of a corresponding 

BMAP. Due to this incomplete data, the parameters for a BMAP cannot be properly estimated 

by standard statistical techniques, e.g. moment matching. Dempster, Laird, and Rubin 

introduced the expectation-maximization (EM) algorithm [5] for computing maximum 

likelihood estimates from incomplete data. Based on this work, Asmussen proposed an EM 

algorithm for PH renewal processes [3]. Deng and Mark introduced a first approach for 

adapting the EM algorithm to an MMPP [6]. Ryden tailored the EM algorithm for the MMPP 

and developed an implementation [15]. To the best of our knowledge, tailoring the EM 

algorithm for BMAPs, developing a numerical stable implementation and utilizing the BMAP 

for traffic modeling is an open research problem. 
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In this paper, we introduce an efficient and numerical stable method for estimating the 

parameters of a BMAP with the EM algorithm. We show how the randomization technique 

[9], [14], [17] and a stable calculation of Poisson jump probabilities [8] can effectively be 

utilized for the computation of the time-dependent conditional expectation of a continuous-

time Markov chain (CTMC) required by the E-step of the EM algorithm. In fact, we present 

efficient computational formulas for the E-step of the EM algorithm and show how to utilize 

the EM algorithm for the effective parameter estimation of BMAPs. Based on these 

methodological results, we introduce a framework for traffic modeling of aggregated IP traffic 

utilizing the BMAP, which both is analytically tractable and closely captures the statistics of 

the measured traffic data. The key idea of this aggregated traffic model lies in customizing the 

batch Markovian arrival process such that different lengths of IP packets are represented by 

rewards, i.e., batch sizes of arrivals, of the BMAP. In order to show the advantage of the 

BMAP modeling approach over other widely used analytically tractable models, we compare 

the customized BMAP with the MMPP and the Poisson process by means of visual inspection 

of sample paths over four different time scales, by presenting important statistical properties, 

by formal analysis of traffic burstiness using R/S statistics, and by queuing system analysis. 

This paper is organized as follows. To make the paper self-contained, Section 2 recalls the 

definition and properties of the BMAP and the randomization technique for numerical 

transient analysis of Markov chains. Section 3 provides a primer to the EM algorithm and 

presents effective computational formulas for the expectation step (E-step) and the 

maximization step (M-step) tailored to the BMAP. In Section 4, we present a framework for 

traffic modeling of aggregated IP traffic utilizing the BMAP. A comparative study illustrates 

the effectiveness of the proposed parameter estimation procedure and the accuracy of the 

proposed traffic model. Finally, concluding remarks are given. 

 

2 Mathematical Background 

2.1 The Batch Markovian Arrival Process 

The batch Markovian arrival process (BMAP) belongs to the class of Markov renewal 

processes. Consider a continuous-time Markov chain (CTMC, [13]) with ( )1N +  states 

{ }0,1, , N… , where the states in { }1,2, , N…  are transient and 0 is absorbing. Moreover, π  

denotes the initial state probability vector of the CTMC. Based on this governing CTMC, the 

BMAP can be constructed as follows: The CTMC evolves until an absorption in state 0 

occurs. The chain is then instantaneously restarted in one of the transient states { }1,2, , N… . 

When restarting the BMAP after absorption in a transient state j, the probability for selecting 

state j is allowed to depend on state i from which absorption has occurred. Thus, the 

distribution of the next arrival may depend on the previous history. Furthermore, there may 
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exist multiple paths between two states i and j corresponding to different rewards, i.e., batch 

sizes of arrivals. Due to the addition of rewards the BMAP provides a more comprehensive 

model for representing IP traffic than the MMPP and the MAP, while still being analytically 

tractable. 

Formally, assume the BMAP is in a transient state i for an exponentially distributed time 

with rate iλ . When the sojourn time has elapsed, there are ( )1M +  possible cases for state 

transitions: With probability ( )
,i j

mP  the BMAP enters the absorbing state 0 and an arrival of 

batch size m occurs. Then, the process is instantaneously restarted in state j. Note that the 

selection of state j (1 ≤ j ≤ N) and batch size m (1 ≤ m ≤ M) is uniquely determined by 

( )
,i j

mP . On the other hand, with probability ( )
,

0
i j

P  the BMAP enters another transient state 

j, j i≠ , without arrivals. We can define ( ) ( )
, ,

0 0ii j i j
= λ ⋅D P  for i j≠ , ( )

,
0 ii i

= −λD , and 

( ) ( )
, ,ii j i j

m m= λ ⋅D P . Here, ( )0D  defines the rate matrix of transitions without arrivals, 

whereas the matrices ( )mD  define rate matrices of transitions with arrivals of batch size m 

(1 ≤ m ≤ M). Summing up ( )0D  and ( )mD  (1 ≤ m ≤ M) leads to ( ) ( )
1

0
M

m
m

=
= +∑D D D , 

where D is the infinitesimal generator matrix of the CTMC underlying the BMAP. 

Furthermore, the matrix ( )m tf  of probability density functions (pdf) defines probability laws 

for state changes in the CTMC from i to j with an arrival of batch size m at time t. The matrix 

of complementary cumulative distribution functions (ccdf) ( )c tF  defines conditional 

probabilities that given the CTMC is in state i the chain will reside in state j at time t without 

arrivals until time t. The matrices ( )m tf  and ( )c tF  are given by 

( ) ( ) ( )0e t
m t m= ⋅Df D  and ( ) ( )0e tc t = DF . (1) 

Recall, that the key idea of considering both the interarrival-times and packet lengths relies 

in regarding the packet lengths as the rewards of the BMAP. In Section 3, we introduce a 

computational efficient and numerical robust EM (expectation maximization) algorithm [5] 

for the parameter estimation process of BMAPs, i.e., estimation of the parameter set φ 

comprising the probability vector π and the transition rate matrices ( ) ( )0 , , MD D… . Based 

on this parameter estimation, such a customized BMAP constitutes an aggregated IP traffic 

model considering both packet interarrival-times and packet lengths. 

2.2 The Randomization Technique 

Randomization (also called uniformization or Jensen's method [9], [14], [14a]) has proven to 

be an effective numerical method for computing transient measures of CTMCs involving 

matrix exponentials as introduced in Eq. (1). Reibman and Trivedi showed that randomization 

constitutes the method of choice for non-stiff and mildly stiff CTMCs. For transient analysis 

of stiff CTMCs, the implicit Runge-Kutta method can effectively be employed [14]. Applying 

the randomization technique to a continuous-time Markov chain with generator matrix Q of 

dimension N, a scalar 
1

,1.02 max
i N

i iq
≤ ≤

= ⋅ Q  and a matrix A 
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1

q
= +A Q I  (2) 

are defined. Scaling the maximum diagonal element q by the factor 1.02 ensures that the 

discrete-time Markov chain with generator A is aperiodic. Since negative entries of the matrix 

Q are restricted to its diagonal, all entries of the matrix A are nonnegative. Rewriting equation 

(2) yields q q= −Q A I  and the matrix exponential e tQ  can be expressed as 

e e et qt qt−= ⋅Q A . (3) 

Using the truncated series expansion of the matrix exponential and equation (3), the transient 

probability vector tπ  can be calculated by 

( ) ( )
( , ) ( , )

0 0
( , ) ( , )

( )
e e ;

!

nR qt R qt
t n qt

t
n L qt n L qt

qt
n n qt

n

ε ε
−

= ε = ε

= ⋅ ≅ ⋅ ⋅ ⋅ = ⋅β∑ ∑Q Aπ π π Φ , (4) 

where ( ),L qt ε  and ( ),R qt ε  denote the left and right truncation points for a given error 

tolerance ε, respectively. 

In Eq. (4), ( )nΦ  denotes the state probability vector of the discrete-time Markov chain 

with transition probability matrix A at step n. The term ( );n qtβ  denotes the probability mass 

function of the Poisson distribution with parameter qt at n. According to Eq. (4), the 

computation of the transient probability vector tπ  of the continuous-time Markov chain is 

reduced to the computation of the transient probability vector ( )nΦ  of a discrete-time 

Markov chain with probability matrix A and appropriate Poisson probabilities. The function 

( )nΦ  can be efficiently computed by recursive vector-matrix multiplications [9] by 

( ) 00 =Φ π  and ( ) ( )1n n+ = ⋅ AΦ Φ . (5) 

Since the probability mass function of the Poisson distribution thins for growing qt, round-

off errors for large qt may affect the computation of Poisson probabilities. Thus, the 

randomization technique is enhanced by a stable calculation of Poisson probabilities proposed 

by Fox and Glynn [8]. Given an error tolerance ε, the computational complexity of a 

dense/sparse implementation of the randomization method is given by ( )2O N qt⋅  and 

( )O qtη⋅ , respectively, where η denotes the number of nonzero entries in the generator 

matrix Q. Furthermore, the randomization technique is an efficient tool for calculating the 

conditional expectation of the state probability vector of a CTMC in a time interval (0, ]t  

given the chain resides in state i at time 0 [14]. 
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3 The EM Algorithm for the BMAP 

3.1 Fundamentals of the EM Algorithm 

The EM algorithm [5] implements maximum likelihood estimation in case of incomplete data. 

Such incomplete data can be thought of as partial observations of a larger experiment. In fact, 

for a BMAP only arrivals times and batch sizes of arrivals, e.g. arrival times of IP packets and 

their packet lengths, are observable. All state changes in the governing CTMC not hitting the 

absorbing state are not observable and, thus, cannot be derived from measured trace data. 

Formally, suppose that y is the observable part of a considered experiment. This 

experiment can be described completely by y and the non-observable data x denoted as the 

missing data. Let ( ), yφL  be the likelihood of a parameter set φ given the observation y and 

let ( ), ,c x yφL  be the so-called complete likelihood of the parameter set φ including the 

missing data x. Assume ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nt b t b t b=y …  is the observed sequence of 

interarrival times kt  and the corresponding batch sizes kb . Define 1k k kt t t −∆ = −  for 1 ≤ k ≤ n. 

Then, the likelihood of a BMAP with parameter set φ is given by: 

( ) ( )
1

,
k

n

b k
k

t
=

= ⋅ ∆ ⋅∏y f 1φ πL  (6) 

Recall that, in Eq. (6), π denotes the initial state probability vector of the CTMC, ( )
kb tf  

defines the matrix of probability density functions, and φ is a specific parameter set for the 

BMAP comprising π and the transition rate matrices ( ) ( )0 , , MD D… . The vector 1 

represents a vector of appropriate dimension comprising 1s in each entry. Note, that the 

(logarithm of the) likelihood measures the quality of the estimated parameter set [5]. 

The EM algorithm iteratively determines estimates of the missing parameter set φ of the 

BMAP. Denote by ( )rφ  the parameter set calculated in the r-th iteration of the EM 

algorithm. ( )rφ  comprises ( )rπ  and ( ) ( )0, , , ,r M rD D… , which denote the initial state 

probability vector as well as the transition rate matrices in the r-th iteration, respectively. We 

denote further by φP  and φE  the conditional probability and the conditional expectation given 

the estimate φ, respectively. As shown in [5], the estimate 

( ) ( )( ){ }ˆ arg max log , ,c
r= x y yφ φφ φE L , for 0,1,2,r = … , (7) 

satisfies ( ) ( )( )ˆ, ,r≥y yφ φL L  and ( ) ˆ1r + =φ φ  is the estimate for the parameter set 

determined in the ( )1r + -th step of the algorithm. This iterative procedure is repeated until a 

predefined maximum number of iterations is reached or until some convergence criteria 

holds, which can be, for instance, that each component of ( )rφ  and ( )1r +φ  differs only up 

to a predefined ε, respectively. The computation of the conditional expectation in (7) is called 

the E-step whereas the derivation of the maximum in (7) constitutes the M-step of the EM 

algorithm. As described in [15], the likelihood ( ), yφL  is highly non-linear in φ and is 

difficult to maximize, while the complete likelihood ( ), ,c x yφL  employed in the M-step can 
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often be computed in closed form. This is the main reason for the widespread use of the EM 

algorithm. A further advantage of the EM algorithm over other maximum likelihood methods 

lies in the good convergence behavior of the iterative scheme regardless of the initial estimate 

( )0φ . 

Already for the MMPP, the problem with the practical applicability of the EM algorithm 

for parameter estimation lies in the stable numerical computation of matrix exponentials as 

specified in Eq. (1). Ryden [15] proposed a diagonalization method to compute teQ , but this 

approach relies on the diagonalization property of the matrix Q. It is known that 

decomposition techniques like diagonalization are in general not stable numerical methods for 

computing matrix exponentials [9]. In the next section, we show how to employ the 

randomization technique enhanced by a stable calculation of Poisson probabilities for the 

numerical computation of the matrix exponentials of Eq. (1) for the BMAP. 

3.2 Effective Computational Formulas for the BMAP 

Recall that the observed data in a BMAP is ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nt b t b t b… . The generator of the 

CTMC ( ){ }: 0X t t ≥  underlying the BMAP constitutes the missing data. We assume that 

( )N t  is the counting process of the batch sizes for arrivals. Let { }:1kt k n≤ ≤  be the sequence 

of arrival times. Without loss of generality, we assume 0 0t =  and nt T= . Considering the 

likelihood estimates of the EM algorithm introduced above, we show in the following how to 

maximize the likelihood for the parameter set of a BMAP. 

First of all, we have to define the complete likelihood of the BMAP using the observed 

data y and the non-observable data x. Let ( )m k  be the number of transient states entered 

during the k-th interarrival-time. Moreover, let ( )li k  and ( )ls k  denote the l-th transient state 

and the sojourn time in the l-th transient state during the k-th interarrival-time, respectively. 

Then the complete likelihood of the BMAP is given by 

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 1

0

1

(1) ,
1 0

, 1

, , 0li kl

l l l

i k m km k

m k m k

m kn
s kc

i i k i k i k
k l

s k

ki k i k i k

e

e b

+

−
−λ ⋅

= =

−λ ⋅

+

= × λ ⋅ ⋅

× λ ⋅ ⋅

∏ ∏x y P

P

φ πL
, (8) 

where ( )mP  and iλ  are defined as in Section 2, ( )( )
0

m k

j kj
s k t

=
= ∆∑ , and kb is the batch size of 

the k-th arrival. The first term of the right hand side of Eq. (8) specifies the probability of 

starting the CTMC in state ( )0 1i . For each arrival epoch of the BMAP, the second term 

describes the transient trajectory up to a state ( ) ( )m ki k  from which absorption occurs. The last 

portion of Eq. (8) represents the transition from the transient state ( )( )m ki k  to the absorbing 

state 0 and the restarting of the process in state ( )0 1i k +  with an arrival of batch size kb . 

Recall that ( )
,i j

mP  is the probability, given the chain is in state i, the process enters the 

absorbing state 0 and is instantaneously restarted in state j with an arrival of batch size m. 
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In order to simplify the notation in the estimation step, we define the sufficient statistics T, 

( ) ( )1 , , MA A…  and s as follows. For 1 ≤ i, j ≤ N and i j≠  we define ,i jT  as: 

( ) ( ) ( ) ( ){ }, # 0 , , ,i j t t T X t i X t j N t N t= ≤ ≤ − = = = −T  (9) 

,i jT  is the number of transient state transitions from state i to state j without an arrival. For 

1 ≤ m ≤ M and 1 ≤ i, j ≤ N we define ( )
,i j

mA  as: 

( ) ( ) ( ) ( ) ( ){ },
# 1 , , ,k k k k ki j

m t k n X t i X t j N t N t m= ≤ ≤ − = = = − +A  (10) 

( )
,i j

mA  is the number of absorbing state transitions from state i to state j with an arrival of 

batch size m at arrival times kt . Finally, for 1 ≤ i ≤ N we define is  as: 

( )( )
0

T

i X t i dt= =∫s I , where ( )⋅I  is the indicator function. (11) 

is  captures the total time the CTMC resides in state i. 

The key idea of these sufficient statistics is to capture the complete likelihood expression 

in a more intuitive fashion. Typically, the sufficient statistics can be determined by 

numerically tractable characteristics of the CTMC. Applying some calculus, these sufficient 

statistics can easily be used to rewrite and simplify the expression of the complete likelihood 

in Eq. (8). That is: 

( ) ( )( ) ( ) ( ) ( ) ( ),, ,
00

, ,
1 1 1 1, 1 1 1

, , 0i i ji i i j

N N N N M N N
s mX ic

i i j i j
i i i j j i m i j

e m
⋅=

= = = = ≠ = = =

= ⋅ ⋅ ⋅∏ ∏ ∏ ∏ ∏∏∏D T A
x y D Dφ πIL  (12) 

Intuitively, the second product of Eq. (12) symbolizes the sojourn time of the CTMC for each 

state i. The third product of Eq. (12) captures the behavior for all transient state transitions 

between states i and j. Similarly, the last product of Eq. (12) represents the absorbing state 

transitions between states i and j with arrivals of batch size m. 

When adopting (7) to the considered case of a BMAP, we have to recognize that 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nt b t b t b=y …  is completely characterized by the counting process ( )N t  

introduced above. This leads directly to Eq. (13) with the following abbreviations (14) to (17) 

for ease of notation. In Eq. (13), the maximization ˆ iπ  of iπ  is already given in a natural way. 

Furthermore, it can be shown that using the definition of a BMAP and appropriate partial 

differentiation, Eq. (13) is maximized by Eq. (18). Additionally to the maximization by partial 

differentiation, each of the expressions in Eq. (18) utilizes the maximized sufficient statistics 

(14) to (17) in a very intuitive manner. For example, ( )
,

ˆ 0
i j

D  is the ratio of the total number of 

transient state transitions between states i and j and the total time spent in state i. 

The expressions (13) to (17) in Figure 1 represent the E-step of the EM algorithm while the 

expressions in Figure 2 represent the M-Step of the EM algorithm. For ease of notation, we 

define ( )kL  for 0, ,k n= … , as ( )(0) r=L π  and ( )( ) ( 1)
kb kk k t= − ⋅ ∆L L f . In the same 
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E-step: 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ),, , , ,

1 1 1 1, 1 1 1

log , , ,0

ˆˆˆˆ log 0 log 0 log

c
r

N N N N M N N

i i i i ji i i j i j i j
i i i j j i m i j

N u u T

m m
= = = = ≠ = = =

≤ ≤

= ⋅ + ⋅ + ⋅ + ⋅∑ ∑ ∑ ∑ ∑∑∑

x y

D s T D A D

φ φ

π π

E L
 (13) 

where: 

( ) ( ) ( ){ }ˆ 0 ,0i r X i N u u T= = ≤ ≤φπ P . (14) 

( ) ( ){ } ( ) ( ) ( )( )
0

ˆ ,0 ,0
T

i ir rs N u u T X t i N u u T dt= ≤ ≤ = = ≤ ≤∫s φ φE P . (15) 

( ) ( ) ( ) ( ) ( ) ( ){ },

0

ˆ , , ,0
T

i j r X t i X t j N t N t N u u T dt= − = = = − ≤ ≤∫T φP . (16) 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ },
1

ˆ , , ,0
n

k k k kri j
k

m X t i X t j N t N t m N u u T
=

= − = = = − + ≤ ≤∑A φP . (17) 

Figure 1. E-step for parameter estimation of BMAPs 

 

M-step: 

( ) ( ) ( )( )ˆ 1 ,i i ir r= ⋅ ⋅1 R yπ π φL , for 1, ,i N= … . 

( ) ,,
ˆ ˆ ˆ0 i j ii j

=D T s  and ( ) ( )
, ,

ˆˆ ˆii j i j
m m=D A s , for , 1, ,i j N= … . (18) 

( ) ( ) ( )
, , ,

1, 1 1

ˆ ˆ ˆ0 0
N M N

i i i j i j
j j i m j

m
= ≠ = =

= − −∑ ∑∑D D D , for 1, ,i N= … . 

Figure 2. M-step for parameter estimation of BMAPs 

 

fashion, for 1, ,1k n= + …  ( )kR  is defined as ( 1)n + =R 1  and ( )( ) ( 1)
kb kk t k= ∆ ⋅ +R f R . Let 

i1  and T
i1  denote the i-th unity column and row vector, respectively. The integrals over 

matrix exponentials of Eqs. (15) and (16) can be transformed to Eq. (19) by means of 

probability laws. 

( ) ( ) ( ) ( )
1

11 1
k

k

k

t
c T

k i j b k

t

k t t t t k dt
−

−− ⋅ − ⋅ ⋅ ⋅ − ⋅ +∫ L F 1 1 f R  (19) 

These transformations as well as the detailed evaluation of Eqs. (14) and (17) are given in 

Appendix A and B, respectively. In Figure 3, we present the resulting expressions in 

algorithmic fashion. For efficient and reliable calculation of the integral over matrix 

exponentials of Eq. (19), we have derived effective computational formulas based on the 
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randomization technique. Appropriately adopting the limits and substituting the matrix 

exponentials of Eq. (19) by its series expansion yields 

( ) ( ) ( ) ( )( ) ( )

0 00 ! !

k

k

nmt
k q t tqt

k k
m n

q t tqt
a m e b n e dt

m n

∆ ∞ ∞
− ∆ −−

= =

∆ −
⋅ ⋅ ⋅ ⋅ ⋅∑ ∑∫ , (20) 

where ( ) ( )1 m
k ia m k= − ⋅ ⋅L A 1  and ( ) ( )1

k

T n
k j bb n k= ⋅ ⋅ ⋅ +1 A D R . Applying some calculus 

as well as simple integration rules (also given in Appendix A) and the truncated series 

expansion according to Eq. (4) leads to 

( ) ( ) ( )
( ) ( ), ,

1
1;

k k

k k k
L q t m n R q t

a m b n m n q t
q∆ ε ≤ + ≤ ∆ ε

⋅ ⋅ ⋅β + + ∆∑ , (21) 

which can be efficiently and reliable calculated by means of the randomization technique and 

a stable calculation of Poisson probabilities [8]. Furthermore, we adopted the scaling 

procedure proposed in [15] for calculating the sufficient statistics ,
ˆ

i jT , ( ) ( )
, ,

ˆ ˆ1 , ,
i j i j

MA A… , 

ˆis , ˆ iπ , and the likelihood estimate ( )( , )r yφL . This scaling procedure is necessary because 

these quantities can take extremely small or extremely large values. 

3.3 Efficient Implementation 

Figure 3 presents an iterative scheme for the implementation of the EM algorithm using the 

forward-backward (Baum-Welch) method [15]. As shown in the appendix, the detailed 

expressions of the maximized sufficient statistics ˆis  and ,
ˆ

i jT  in Eqs. (26) and (27) reveal 

strong similarities. Thus, the computation of ˆis  can be performed by means of ,
ˆ

i jT  without 

additional effort (see Figure 3, M-Step). Let { }max max k
k

t t= . Assuming M n<<  and nλ << , 

the computational complexity of a careful and efficient implementation of the E-Step and M-

Step is given by ( )2
maxO n q t N⋅ ⋅ ⋅  for each iteration. Note, that this is the worst-case 

computational complexity, where the randomization technique would have been always 

applied for maxq t⋅ . 

The initial parameter set ( )0φ  can be determined by different approaches including simple 

random initialization, precondition according to moment matching methods, and heuristic 

initialization. All these approaches provide the common property that zero entries in ( )0φ  are 

preserved in the corresponding elements of the successive estimates ( )rφ . This property 

enables the estimation of specialized BMAPs, e.g. MAPs or MMPPs. For random 

initialization, a set of initial estimates is generated randomly. Assuming nλ << , the 

likelihood of each estimate is evaluated with computation complexity ( )( )2
maxlogO n q t N⋅ ⋅ ⋅  

and ( )0φ  is set to the estimate that results in the maximum likelihood of these estimates. 

Again, this denotes the worst-case computational complexity. For a discussion of 

initialization methods, we refer to [15]. In most cases, different initial estimates just result in a 

slightly different number of iterations in the scheme (7) required by the EM algorithm, 

whereas the quality of different estimated parameter sets is very similarly. As shown in 
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Section 4, the implementation of the EM algorithm based on the computational formulas 

presented here requires for each iteration only a few seconds of CPU time on a modern PC for 

considerable large trace files. Thus, we employ simple random initialization for determining 

the initial parameter set ( )0φ . 

 

(1) Determine ( )0φ  according to simple random initialization. 

(2) Initialize 0r ← . 

(3) do 

 (3.1) E-Step: 

   for , 1, , , 1, ,i j N m M= =… … , let ,
ˆ 0i j ←T , ( )

,
ˆ 0

i j
m ←A . 

   Let ( )(0) r=L π , and, for 1, ,k n= … , let ( )( ) ( 1)
kb kk k t= − ⋅ ∆L L f . 

   Let ( 1)n + =R 1 , and, for , ,1k n= … , let ( )( ) ( 1)
kb kk t k= ∆ ⋅ +R f R . 

   for , 1, , , 1, ,i j N k n= =… … , set 

    ( ) ( ) ( ) ( )
1

, , 1
ˆ ˆ 1 1

k

k

k

t
c T

i j i j k i j b k

t

k t t t t dt k
−

−← + − ⋅ − ⋅ ⋅ ⋅ − ⋅ +∫T T L F 1 1 f R . 

   for , 1, , , 1, ,i j N k n= =… … , set 

    km b← . 

    ( ) ( ) ( ) ( ) ( )
, ,

ˆ ˆ 1 1c T
k i ji j i j

m m k t k← + − ⋅ ∆ ⋅ ⋅ ⋅ +A A L F 1 1 R . 

 (3.2) Compute the likelihood ( )( ) ( ) ( ), 1r r= ⋅y Rφ πL . 

 (3.3) M-Step: 

   for , 1, , , 1, ,i j N m M= =… … , set 

    ( ) ( ) ( )( )ˆ 1 ,i i ir r← ⋅ ⋅1 R yπ π φL . 

    ( ) ( ), ,, ,
ˆ ˆ ˆ0 0,i j i ii j i j

r← ⋅D T D T  and ( ) ( ) ( ) ,, , ,
ˆˆ ˆ, i ii j i j i j

m m m r← ⋅D A D T . 

    ( ) ( ) ( )
, , ,

1, 1 1

ˆ ˆ ˆ0 0
N M N

i i i j i j
j j i m j

m
= ≠ = =

← − −∑ ∑∑D D D . 

 (3.4) ( ) ( ) ( ) ( )( )ˆ ˆ ˆˆ1 , 0 , 1 , ,r M+ = D D Dφ π …  and 1r r← + . 

 until {convergence or maximum number of iteration is reached} 

Figure 3. Forward-Backward method for implementing the EM algorithm 
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3.4 Convergence Behavior 

In this section, we demonstrate the convergence behavior of the derived estimation procedure. 

We consider a 3-state BMAP with 4M =  distinct batch sizes as specified in the first column 

of Table 1. Based on this parameter set, a trace file with 200,000n =  arrivals and 

corresponding batch sizes is generated. This trace file is used as input for the EM algorithm in 

order to derive estimates of the (known) parameter set of the BMAP. The parameter set 

shown in the second column of Table 1 serves as initial parameter set for the estimation 

procedure. Running the EM algorithm for 400r =  iterations on this trace file results in the 

estimated parameter set presented in the third column of Table 1. As mentioned above, Table 

1 shows that zero entries in the initial parameter set are preserved in the corresponding 

elements of the successive estimates. We observe that most parameter estimates calculated by 

the EM algorithm are quite close to the corresponding values of the original parameter set. As 

shown in [4], BMAPs are over-parameterized, i.e., different parameter sets can yield the same 

distribution. As a consequence, both the original and the estimated parameter set can differ 

while still showing similar quality, i.e., likelihood, for the considered trace file. Thus, the 

quality of the estimated BMAP should be compared to the quality of the original parameter 

set by the ratio of their likelihoods. With a ratio of 1.000029, this comparison evidently shows 

that the original and estimated parameter set have quite the same quality, although they 

(slightly) differ in parameter values. 

Additionally, the EM algorithm has been applied for 5 different (random) initial parameter 

sets for the considered trace file. Figure 4 plots the logarithm of the likelihood versus the 

number of iterations for these 5 estimation runs. While the likelihood differs significantly for 

small number of iterations, this difference diminishes rapidly for an increasing number of 

iterations, i.e., beyond 250 iterations all likelihood estimates are nearly the same. Thus, for a 

given convergence criteria, where successive estimates differs only up to a predefined ε, 
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Table 1. Original (left), initial (center), and estimated (right) BMAP parameter set 
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Figure 4. Convergence behavior for different (random) initial parameter sets 

 

different initial parameter sets result in estimated parameter sets of similar quality with a 

slightly different number of iterations required for their estimation. Figures 5 and 6 show the 

maximum relative percentage change and absolute change in parameter values of two 

successive iterations. Regardless of the parameter values of the initial parameter set, the 

maximum relative percentage change is below 10% after 50 iterations and below 2% after 400 

iterations. Similarly, as depicted in Figure 6, the absolute change in parameter values is below 

0.1 after 100 iterations and below 0.01 after 400 iterations for almost all initial parameter sets. 

In summary, random initialization has proven to be an easy and sufficient way for 

determining initial parameter sets. 
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4 Traffic Modeling of IP Networks utilizing the BMAP 

4.1 BMAP Traffic Modeling Framework 

As stated above, we customize the batch Markovian arrival process such that different lengths 

of IP packets are represented by rewards (i.e., batch sizes of arrivals) of the BMAP. In order 

to represent an aggregated traffic stream utilizing the BMAP, we apply the parameter 

estimation procedure introduced in Section 3 for a BMAP with N transient states and M 

distinct batch sizes. The choice of N and M is crucial for an accurate capturing of the 

interarrival process and the reward process of the aggregated traffic, respectively. As shown 

above, the computational complexity of the EM algorithm is independent of the choice of M. 

Thus, this modeling approach can be effectively applied for arbitrary packet length (i.e., 

reward) distributions by an increasing value of M. 

The underlying trace file, which constitutes the aggregated traffic, comprises packet 

interarrival-times as well as the corresponding packet lengths. Recalling the BMAP definition 

of Section 2, the mapping process of packet lengths to BMAP rewards results in a BMAP 

parameter set, i.e., π and ( ) ( )0 , , MD D… , of reasonable size ( ) 21M N N+ + . We map the 

packet lengths onto the discrete packet lengths ms , for 1 ≤ m ≤ M, where ms  is the average 

packet length of all packets of the considered trace comprising packet lengths between 

( )1L m M⋅ −  bytes and L m M⋅  bytes, where L denotes the maximum packet length of the 

considered IP network. In the case of Ethernet local area networks (LAN) the maximum 

transfer unit (MTU) of 1500 bytes determines this maximum packet length. Therefore, 

arrivals with batch size m, 1 ≤ m ≤ M, represent packet arrivals with a packet length of ms  

bytes. Note, that this mapping process is applied for ease of notation only. Without this 

mapping, the proposed estimation procedure can be applied for estimating the rate matrices 

( ) ( ) ( )10 , , , Ms sD D D… , where rate matrices ( )mD , { }10, , , Mm s s∉ … , are empty. The 

estimation of these matrices obviously requires the same computational effort. Moreover, the 

estimated matrices are identical to the matrices ( ) ( )0 , , MD D… , which are computed when 

the mapping process is applied. In [11], we presented an aggregated traffic model for the 

Universal Mobile Telecommunication Systems (UMTS) based on measured trace data, which 

successfully employs this traffic modeling framework. 

4.2 IP Traffic Measurement and Modeling 

In order to illustrate the effectiveness and accuracy of the proposed traffic model for 

measured IP traffic, we conducted detailed traffic measurements at the Internet service 

provider (ISP) dial-up modem/ISDN link of the University of Dortmund. Note that we have 

also applied the BMAP traffic modeling approach to various other IP traffic traces (LAN and 

WAN) and observe similar results in terms of effectiveness and accuracy compared to the 

trace considered in this paper. Thus, it is fair to say that the proposed modeling approach 
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comprises general applicability in networking environments. These measurements were 

performed by the software package TCPdump running on a Linux host that sniffs all IP 

packets in the Ethernet segment between the MaxTNT dial-up routers and the Internet router. 

For all IP datagrams sourced or targeted by dial-up modems the TCP/IP header information in 

conjunction with a timestamp of the arrival-time have been recorded and stored for offline 

processing. Note that the TCP/IP header information includes the packet length [18]. 

Similarly to observations in other LANs and wide area networks [19], [20], the analysis of 

the packet length distributions revealed that the packet lengths of all relevant TCP 

applications follow to a large extent a discrete distribution, i.e., packet lengths of 40 bytes, 

576 bytes, and 1500 bytes dominate with an overall percentage of 80% of all TCP packets 

(see Figure 7). This observation can be explained because they correspond to the maximum 

transfer units of the used network protocols. Most application protocols like FTP, HTTP, 

POP3, and SMTP are used to transfer relatively large data blocks (as opposed to many small 

packets in real-time applications). Therefore, in order to reduce overhead, as many packets as 

possible are filled up to the MTU of the underlying protocol, which typically are 1500 bytes 

in the Ethernet protocol and 576 bytes in the serial line Internet protocol (SLIP). The choice 

between a MTU of 576 bytes or 1500 bytes depends on the network configuration of the dial-

up client. The large amount of 40 bytes packets is to a large extent caused by TCP 

acknowledgments with an empty data field. Moreover, we observe that the remaining packet 

lengths are scattered uniformly between 40 bytes and 1500 bytes. 
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Figure 7. Probability mass function of TCP packets lengths 
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The aggregated traffic model utilizes these observations where different reward values of 

the BMAP represent different discrete packet lengths. Thus, the parameter estimation 

procedure is applied for a BMAP with 3M =  distinct batch sizes using a trace file of 

1,500,000 samples (measured 10.00 a.m. 13 December 2000 at the dial-up modem/ISDN link) 

comprising interarrival-times and the corresponding packet lengths. By empirical 

observations, we found that a 3-state BMAP ( )3N =  is sufficient in order to capture the 

interarrival process of the considered trace. Recall that the choice of M is crucial for the 

mapping process of packet lengths to BMAP rewards and corresponds to, but is not restricted 

by the fact that a large amount of packets comprise three different packet lengths (see Figure 

7). As defined above, the average packet lengths ms  ( 3M = ) of our measurements are as 

follows: 1 94s =  bytes, 2 575s =  bytes, and 3 1469s =  bytes. 

Table 2 presents the initial parameter set ( )0π  and ( ) ( )0,0 , , 3,0D D…  as well as the 

estimated parameter set ( )rπ  and ( ) ( )0, , , 3,r rD D…  after 51r =  iterations of the EM 

algorithm introduced in Section 3. Convergence is reached when each component of ( )rφ  

and ( )1r +φ  differs only up to 0.01ε = . Figure 8 plots the required CPU time of this 

parameter estimation procedure versus the logarithm of the likelihood, i.e., the quality of the 

estimated parameter set. The EM estimation procedure is quite effective and requires less than 

6 minutes of CPU time on a Pentium IV 1.7 GHz PC with 256 MB of main memory for 

convergence after 51 iterations. 
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Figure 8. Convergence behavior of the EM algorithm 
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4.3 Comparative Study of Aggregated IP Traffic Modeling 

The following shows the effectiveness of our BMAP modeling approach, compared with a 3-

state MMPP ( )3N =  and Poisson process, by means of visual inspection of sample paths 

over multiple time scales, by presenting important statistical properties, by formal analysis of 

traffic burstiness as well as by investigations of queuing behavior. Figure 9 and 10 plot 

sample paths of the measured traffic (Figure 9, left) compared with the sample paths of the 

aggregated traffic streams of the customized BMAP using the estimated parameter set of 

Table 2 (Figure 9, right), the MMPP (Figure 10, left), and the Poisson process (Figure 10, 

right), respectively. For sample path construction of the MMPP and the Poisson process, we 

associate the average packet length of all IP packets comprising 315 bytes with the arrival-

times of the MMPP and the Poisson process. The aggregated traffic streams of the MMPP and 

the Poisson utilized for sample-path construction comprise the same number of samples as the 

measured trace file. Note, that the parameter matrices ( )0D  and ( )1D  of the MMPP have 

also been estimated by means of the EM algorithm for BMAP. This is accomplished by 

restriction of ( )1D  to diagonal entries that are associated with the state-dependent Poisson 

arrival-rates of the MMPP. The arrival-rate of the Poisson process is naturally given by the 

mean arrival-rate of the measured trace file. In order to show the effectiveness of our 

approach these sample paths are plotted on four different time scales, i.e. 0.001 sec, 0.01 sec, 

0.1 sec, and 1.0 sec. Figure 9 and 10 evidently show that the customized BMAP authentically 

captures the average transferred data volume per time unit and exhibits traffic burstiness over 

multiple time scales in the considered scenario. Moreover, these sample paths show the clear 

advantage of the customized BMAP over the MMPP and the Poisson process, which fail to 

capture the original sample path over almost all time scales. 

In order to emphasize these observations, we investigate the distribution of the transferred 

data volume per time unit for the measured trace, customized BMAP, the MMPP, and the 
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Table 2. Initial (left) and estimated (right) BMAP parameter set 
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Figure 9. Sample paths of the measured traffic (left) 

and the customized BMAP (right) at different time scales 
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Figure 10. Sample paths of the MMPP (left) and the Poisson process (right) 

at different time scales 
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Figure 11. Cdfs of data rates on different time scales 

 

Poisson process, respectively. Figure 11 plots the cumulative distribution function (cdf) of 

transferred data volume for the time scales 0.001 sec, 0.01 sec, 0.1 sec, and 1 sec. We 

observe, that the cdf of the measured traffic and the customized BMAP performs different on 

the considered time scales. For the time scales 0.01 sec and 0.1 sec the cdf of the measured 

trace is accurately represented by the customized BMAPs cdf. On the smallest time scale, i.e., 

0.001 sec, both cdfs exhibit the same trends whereas the cdf of the measured trace is not 

exactly matched by the customized BMAP. This can be explained by the choice of 3M =  for 

the customized BMAP, where the lack of various different packet lengths leads to the discrete 

steps in shape of the BMAPs cdf. By increasing the value of M, the differences of the cdfs on 

this time scale diminish. On the other hand, the shape behavior of the cdfs on the largest time 

scale shows significantly differences, whereas the trends in both cdfs are roughly identically. 

Here, the BMAPs second essential parameter, i.e., the number of transient states N, does make 

the trick. By increasing the number of transient states ( 3N =  in this study), the shape of the 

BMAPs cdf will be similar to the cdf of the measured trace. This is, because the flexibility for 

transitions between states is rapidly increased by the choice of N (see Section 3), i.e., an 

increased number of transient states is actually capable to generate very low data rates (head 

of the cdf) and very high data rates (tail of the cdf) even on large time scales. As expected, the 

cdf of the Poisson process performs badly and shows significant differences to the cdf of the 

measured traffic over all considered time scales. Obviously, the MMPP outperforms the 

Poisson process, but is inferior in capturing the cdf of the measured traffic, compared with the 

customized BMAP over all considered time scales. 
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time unit in sec. mean standard deviation skewness kurtosis
measured traffic 27.63 153.02 6.72 52.77

customized BMAP 27.70 157.90 8.12 84.34
MMPP 27.65 118.39 5.58 42.73

Poisson process 27.65 93.37 3.38 14.46
measured traffic 276.27 697.46 4.21 29.03

customized BMAP 277.01 662.32 3.82 23.14
MMPP 276.47 491.13 2.81 13.84

Poisson process 276.49 295.82 1.07 4.14
measured traffic 2762.64 2240.81 1.44 6.15

customized BMAP 2770.10 2191.71 1.27 5.15
MMPP 2764.61 1672.45 0.90 4.21

Poisson process 2764.86 933.00 0.33 3.11
measured traffic 27621.50 10954.80 0.60 3.21

customized BMAP 27697.30 6929.95 0.41 3.19
MMPP 27643.70 5413.94 0.28 3.05

Poisson process 27643.70 2972.29 0.03 2.94

0.001

0.01

0.1

1

 

Table 3. Statistical properties of data rates on different time scales 

 

Table 3 presents additionally statistical properties for the data rates of the measured traffic, 

the BMAP, the MMPP, and the Poisson process, on different time scales in terms of mean, 

standard deviation, skewness, and kurtosis. Recall, that the mean gives the center of the 

distribution and the standard deviation measures the dispersion about the mean. The third 

moment about the mean measures skewness, the lack of symmetry, while the forth moment 

measures kurtosis, the degree to which the distribution is peaked. In Table 3, skewness and 

kurtosis are standardized by an appropriate power of the standard deviation. We observe, that 

mean and standard deviation of the measured traffic and the customized BMAP perform quite 

similar over the considered time scales, with exception of the BMAPs standard deviation on 

the largest time scale. The skewness of the measured traffic is quite similar on medium time 

scales, i.e., 0.01 sec and 0.1 sec, while the customized BMAP overestimates the skewness on 

the smallest time scale and underestimates it on the largest time scale. Furthermore, the last 

column of Table 3 indicates, that kurtosis, i.e., peakedness, is well captured on the three 

largest time scales, whereas the BMAP significantly exceeds the measured traffic on the 

smallest time scale. This is, because on the smallest time scale the various packet lengths of 

the measured traffic cannot be represented exactly by only three ( 3M = ) different reward 

values, i.e., packet lengths. This effect diminishes with increasing value of M. Moreover, 

Table 3 evidently shows, that the MMPP as well as the Poisson process are clearly inferior 

compared with the customized BMAP and badly capture standard deviation, skewness and 

kurtosis, over all considered time scales. 

These observations are emphasized by the analysis of traffic burstiness, which can be 

expressed in terms of the Hurst parameter H. Figure 12 plots the R/S statistics [21] of the 

measured traffic, the customized BMAP, the MMPP as well as the Poisson process. The 
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Figure 12. R/S statistic plot of the measured traffic and the analytically tractable models 

 

degree of traffic burstiness H, can easily derived for a considered time scale by the slopes of 

linear regression plots of the R/S statistics. As expected, the Poisson process (H = 0.5558) 

fails to capture the traffic burstiness, while the MMPP (H = 0.6408) and the customized 

BMAP (H = 0.6418) both indicate a significant amount of traffic burstiness compared to the 

Hurst parameter of the measured traffic (H = 0.6785). 

The practical applicability of our BMAP modeling approach can be emphasized by the 

analysis of the queuing performance. As proposed in [1], we utilize a simple queuing model 

with deterministic service time and unlimited capacity for investigations of the complement 

distribution of the queue length. Figure 13 depicts the complement distribution of the queue 

length Q of the BMAP/D/1 queuing system, the MMPP/D/1 queuing system and the M/D/1 

queuing system (using the Poisson process), compared with the simulations performed with 

the measured traffic for different traffic intensities ρ. It is obvious that the BMAP model 

shows a similar behavior in terms of queuing performance for low traffic intensities, i.e., 

0.3ρ =  and 0.4ρ = . For traffic intensities of 0.5ρ =  and 0.6ρ =  the customized BMAP 

matches the distribution of the measured traffic up to medium queue length. As expected, the 

Poisson process performs badly for all considered traffic intensities. Again, the MMPP 

outperforms the Poisson process, but is significantly inferior in capturing the complement 

distribution of the queuing length, compared with the customized BMAP for all considered 

traffic intensities. 
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Figure 13. Complement distribution of queue length Q of single server queue 

with deterministic service time for different traffic intensities ρ 

 

5 Conclusions 

We introduced an efficient and numerical stable method for estimating the parameters of a 

batch Markovian arrival process (BMAP) with the EM algorithm. The contribution of the 

paper is two-fold. First, we show how the randomization technique and a stable calculation of 

Poisson jump probabilities can effectively be utilized for the computation of the time-

dependent conditional expectation of a continuous-time Markov chain (CTMC) required by 

the estimation step (E-step) of the EM algorithm. Second, based on these methodological 

results, we introduce a framework for traffic modeling of aggregated IP traffic utilizing the 

BMAP, which both is analytically tractable and closely captures the statistics of the measured 

traffic data. The key idea of this aggregated traffic model lies in customizing the batch 

Markovian arrival process such that different lengths of IP packets are represented by reward 

values, i.e., batch sizes of arrivals, of the BMAP. In order to demonstrate the advantages of 

the BMAP modeling approach over other widely used analytically tractable models, we 

compare the customized BMAP with the MMPP and the Poisson process by means of visual 

inspection of sample paths over four different time scales, by presenting important statistical 

properties and by formal analysis of traffic burstiness using R/S statistics. Furthermore, 

investigations of queuing behavior demonstrate the practical applicability of aggregated 

traffic modeling using the BMAP. 
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Appendix A Applying Randomization for Integrals over Matrix  
Exponentials 

For efficient and robust calculation of the integrals over matrix exponentials of Eqs. (15) and 

(16) we present in the following effective computational formulas based on the randomization 

technique. The integrals over matrix exponentials can be transformed to Eq. (22) by means of 

simple probability laws. 
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Appropriately adopting the limits and using the series expansion of the matrix exponential 

yields: 
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where ( ) ( )1 m
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as well as simple integration rules and the truncated series expansion according to Eq. (4) 

leads to 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

0 00

0 0 0

0 0 0

1

! !

! !

!

!

k

k

k

k

k

k

k

nmt
k q t tqt

k k
m n

tm n
nq t m

k k k
m n

tm n
nq t m

k k k
m n

m nm n
q t k

k k

q t tqt
a m e b n e dt

m n

q
a m b n e t t t dt

m n

m nq
a m b n e t t t dt

nm n

tq
a m b n e

m n

∆ ∞ ∞
− ∆ −−

= =

∆+∞ ∞
− ∆

= =

∆+∞ ∞
− ∆

= =

+ ++
− ∆

∆ −
⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ∆ −

+ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∆ − +  

∆
= ⋅ ⋅ ⋅ ⋅

+

∑ ∑∫

∑∑ ∫

∑∑ ∫

( ) ( ) ( )
( ) ( )

0 0

, ,

1

1
1;

k k

m n

k k k
L q t m n R q t

m n

a m b n m n q t
q

∞ ∞

= =

∆ ε ≤ + ≤ ∆ ε

+ +

≅ ⋅ ⋅ ⋅β + + ∆

∑∑

∑

. (24) 



-25- 

Appendix B Detailed Investigations of the Conditional Expectations 

The evaluation of Eqs. (14) to (17) is given in Eqs. (25) to (28), respectively. Further 

calculations show, that the desired conditional probabilities and expectations can be 

transformed as follows. 
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where ( )( ) ( ) ( ), 1r r= ⋅y Rφ πL  is the likelihood estimate as defined in (6). 

Recall that is  captures the total time the CTMC resides in state i. 
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where *( )N t  denotes the counting process of the arrival process. 

Analog considerations show that 
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where ,i jT  is the number of transient state transitions from state i to state j without an arrival 

at the time of transition and ( ) ( )( )N t N t= −I  is true except for arrival times kt t= . 

Furthermore, ( )
,i j

mA  determines the number of absorbing state transitions from state i to 

state j with an arrival of batch size m at arrival times kt . That is: 
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where ( ) ( )( )k kN t N t m= − +I  is true for all arrival times kt t=  with batch size m. 
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